
c

b2b1

a2a1
1

802.11a Physical Layer IP

c© Ingenieurbüro BAY9, Dresden, Germany

Ingenieurbüro BAY9

Nordstr. 40

01099 Dresden / Germany

+49 351 7924700

info@bay9.de

http://www.bay9.de

Version 22.04.01

c

b2b1

a2a1
1

Contents

1 Introduction 8

1.1 Scope . 8

1.2 Delivery file structure . 8

1.3 Features . 8

1.4 Overview . 9

1.5 Evaluation vs. full featured version . 10

2 Getting started 11

2.1 Overview . 11

2.2 Prerequisites . 11

2.3 Minimum setup . 11

2.4 Example module wlanX . 12

2.4.1 Description . 12

2.4.2 Build . 13

2.4.3 UART access configuration . 13

2.4.4 Reset . 13

2.5 Booting and basic messages . 14

2.5.1 Booting and version . 14

2.5.2 Basic TX test . 14

2.5.3 Basic RX test . 14

2.5.4 IP core init + TX test . 15

2.6 Test build and run including Virtual RF . 15

3 Description – General aspects 17

3.1 Reset . 17

3.1.1 Overview . 17

3.1.2 Hardware reset . 17

3.1.3 Software reset . 17

3.1.4 Internal self reset . 17

3.1.5 Boot confirm message . 17

3.2 Booting . 18

3.2.1 Using the boot file . 18

3.2.2 Using the memory init files . 18

3.3 Control interface . 18

3.3.1 Interface selection . 18

3.3.2 Ctrl . 18

3.3.3 UART . 18

c© Ingenieurbüro BAY9, Dresden, Germany 3

c

b2b1

a2a1
1

Version 22.04.01

3.4 Control messages and configuration . 19

3.5 Interfaces and handshake signals . 19

3.5.1 Overview . 19

3.5.2 Inputs . 20

3.5.3 Outputs . 20

3.5.4 Summary . 20

3.5.5 Partial use of handshaking lines . 20

3.6 Data interface . 21

3.6.1 Overview . 21

3.6.2 TX data input . 21

3.6.3 RX data output . 21

3.7 ADC/DAC interface . 21

4 Frame transmission and reception 22

4.1 TX/RX message control flow and timing . 22

4.1.1 Overwiew . 22

4.2 TX request . 22

4.2.1 Control flow . 23

4.2.2 Start sequence timing . 24

4.2.3 Number of bytes . 24

4.3 RX request . 24

4.3.1 Control flow . 25

4.3.2 Timing . 25

4.4 TX/RX configuration overview . 26

4.4.1 AGC . 26

4.4.2 Time tracking . 26

4.4.3 TX baseband output level . 26

4.4.4 TX start timing . 26

4.4.5 TX data source selection . 26

4.4.6 Band and ADC selection . 27

4.4.7 System clock and timer . 27

4.5 IQ sample debug buffering . 27

4.5.1 Overview and configuration . 27

4.5.2 IQ buffer modes . 27

4 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

5 RF interface 29

5.1 Prerequisites . 29

5.1.1 AGC response time . 29

5.1.2 Oscillator stability . 29

5.1.3 Baseband and RF oscillator coupling . 29

5.2 RF pin connections . 29

5.2.1 Rx/Tx/PaOn . 29

5.2.2 Attenuation . 29

5.2.3 Three wire bus . 30

5.3 AGC calibration . 30

5.3.1 Overview . 30

5.3.2 Calibration of attenuation step 0 . 30

5.3.3 AGC table configuration . 31

5.4 DC offset correction . 31

5.4.1 Overview . 31

5.4.2 TX . 32

5.4.3 RX . 32

6 Messages 33

6.1 Overview . 33

6.2 Targets and forwarding . 33

6.3 Definitions . 34

6.3.1 Message ID numbering . 34

6.3.2 MsgId 24 – ResetReq . 34

6.3.3 MsgId 25 – TxImmAReq . 34

6.3.4 MsgId 26 – TxImmBReq . 35

6.3.5 MsgId 27 – TxReq . 35

6.3.6 MsgId 28 – RxReq . 35

6.3.7 MsgId 29 – RxAcqStopReq . 36

6.3.8 MsgId 30 – CfgAgcReq . 36

6.3.9 MsgId 31 – CfgAgcTblReq . 37

6.3.10 MsgId 32 – CfgDcOffCorrReq . 37

6.3.11 MsgId 33 – CfgDcOffCorrTxReq . 37

6.3.12 MsgId 34 – CfgDcOffCorrRxReq . 37

6.3.13 MsgId 35 – CfgCcaReq . 38

6.3.14 MsgId 36 – CfgTtReq . 38

6.3.15 MsgId 37 – CfgTxScalingReq . 39

6.3.16 MsgId 38 – CfgTxTimingReq . 39

6.3.17 MsgId 39 – CfgTxDataSrcReq . 39

c© Ingenieurbüro BAY9, Dresden, Germany 5

c

b2b1

a2a1
1

Version 22.04.01

6.3.18 MsgId 40 – CfgBandSelReq . 40

6.3.19 MsgId 41 – CfgAcqThrReq . 40

6.3.20 MsgId 42 – CfgTwbReq . 40

6.3.21 MsgId 43 – CfgGpoReq . 40

6.3.22 MsgId 44 – GetGpiReq . 41

6.3.23 MsgId 45 – CfgTimerPrescaleReq . 41

6.3.24 MsgId 46 – GetTimeReq . 41

6.3.25 MsgId 47 – VersionReq . 41

6.3.26 MsgId 48 – LedBlinkReq . 42

6.3.27 MsgId 49 – IqBufModeReq . 42

6.3.28 MsgId 50 – IqBufWriteReq . 42

6.3.29 MsgId 51 – IqBufReadReq . 42

6.3.30 MsgId 63 – BootCfm . 43

6.3.31 MsgId 64 – TxStartCfm . 43

6.3.32 MsgId 65 – TxEndCfm . 43

6.3.33 MsgId 66 – RxStartCfm . 43

6.3.34 MsgId 67 – RxAcqEndCfm . 43

6.3.35 MsgId 68 – RxHdrCfm . 44

6.3.36 MsgId 69 – RxEndCfm . 44

6.3.37 MsgId 70 – CfgAgcCfm . 44

6.3.38 MsgId 71 – CfgAgcTblCfm . 45

6.3.39 MsgId 72 – CfgDcOffCorrCfm . 45

6.3.40 MsgId 73 – CfgDcOffCorrTxCfm . 45

6.3.41 MsgId 74 – CfgDcOffCorrRxCfm . 45

6.3.42 MsgId 75 – CfgCcaCfm . 45

6.3.43 MsgId 76 – CfgTtCfm . 46

6.3.44 MsgId 77 – CfgTxScalingCfm . 46

6.3.45 MsgId 78 – CfgTxTimingCfm . 46

6.3.46 MsgId 79 – CfgTxDataSrcCfm . 46

6.3.47 MsgId 80 – CfgBandSelCfm . 46

6.3.48 MsgId 81 – CfgAcqThrCfm . 47

6.3.49 MsgId 82 – CfgTwbCfm . 47

6.3.50 MsgId 83 – CfgGpoCfm . 47

6.3.51 MsgId 84 – GetGpiCfm . 47

6.3.52 MsgId 85 – CfgTimerPrescaleCfm . 47

6.3.53 MsgId 86 – GetTimeCfm . 48

6.3.54 MsgId 87 – VersionCfm . 48

6.3.55 MsgId 88 – LedBlinkCfm . 48

6.3.56 MsgId 89 – IqBufModeCfm . 48

6.3.57 MsgId 90 – IqBufWriteCfm . 49

6.3.58 MsgId 91 – IqBufReadCfm . 49

6 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

7 Test benches 50

7.1 Prerequisites . 50

7.2 Top level test benches . 50

7.2.1 Overview . 50

7.2.2 Test scope and concept . 50

7.2.3 Operation . 50

7.2.4 Invocation . 51

7.3 Module level test benches . 51

7.3.1 Overview . 51

7.3.2 Test scope and concept . 51

7.3.3 Operation . 52

7.3.4 Invocation . 52

7.3.5 Dumping a VCD file . 52

7.4 FPGA testing . 52

8 Frequently asked questions 53

8.1 Applications . 53

8.2 Matlab/Octave/C references . 53

8.3 Verilog implementation + synthesis . 53

8.4 RF interface . 54

9 License 55

9.1 General . 55

9.2 Limited liability . 55

9.3 Restrictions . 55

9.4 Non-private use . 55

9.5 Private use . 55

References 56

c© Ingenieurbüro BAY9, Dresden, Germany 7

c

b2b1

a2a1
1

Version 22.04.01

1 Introduction

1.1 Scope

This document describes Ingenieurbüro BAY9’s 802.11a Physical Layer Baseband IP core.

1.2 Delivery file structure

The delivery contains 6 subdirectories:

dat: Boot data file and memory contents / start command files

doc: This documentation

msg: Message ID definitions and example functions of control message handlers in Matlab/Octave

reg: Module regression tests (full version only)

reg/top: Top level tests

reg/mod: Module level tests

src: Verilog sources

src/common: Miscellaneous general purpose modules

src/modules: Signal processing and control modules

src/top: The top module wlan.v and a corresponding instance definition wlan_0.v that can

be included into the Verilog file containing the IP block

tst: Test build examples + Matlab/Octave test scripts

tst/altera: Build script and configuration files for Altera-Quartus

tst/xilinx: Build script and configuration files for Xilinx-Vivado

tst/xilinxIse: Build script and configuration files for legacy Xilinx-Ise

tst/m: Matlab/Octave test scripts or setup + test (single core)

1.3 Features

The BAY9 802.11a IP core allows to transmit and receive data packets according the sections 17.1-17.3 of [1].

The TX contains everything from the data byte input to the DAC signal outputs. For RX, the ADC input data is

acquired, synchronized, decoded and provided at the data byte output. CRC-32, digital up/down conversion, and

RF control are included in addition.

Main features summary:

• Fully IEEE 802.11a standard compliant, 802.11p is possible using half the clock frequency

• Support for all data rates 6-54Mbit/s

• Written in Verilog without vendor specific IP cores

• Synthesis possible for Altera and Xilinx FPGAs without source code changes

• 80MHz target frequency, runs on Virtex-4, Stratix II or faster devices

• Generic message interface for configuration, operation, and debugging

• Separate interfaces for control messages and data input/output

• RF control signals included (PA/TX/RX on/off, up to 16 parallel AGC lines, 3-wire serial bus)

• Generic AGC algorithm allows simple configuration via message interface

• Digital up and downconversion to/from 80 MS/s DAC/ADC interface for zero IF or 20MHz low IF mode

• Message control via UART and internal data generator for PHY-only debugging directly from a PC

The core also contains an 802.11b transmitter, but no receiver yet.

8 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

1.4 Overview

The functional IP overview is shown in figure 1. The minimum set of I/O lines that needs to be connected for a

functional test is marked in red. The Verilog top module is wlan.

Fig. 1: 802.11a IP system overview

System:

System clock and reset are provided by the clk and resetIn signals. The resetOut signal indicates that the system

is still in reset state after a HW or SW reset. Reset signals are active high. The system needs a minimum clock

frequency of 80MHz, but can operate at any higher clock frequency if required.

Host interface:

TX data bytes need to be provided at the 16-bit input dataTx, while RX output data is received at output dataRx.

Alternatively, TX input data can be generated by the internal dataGen block for testing.

Control messages are sent or received either via the parallel 16-bit ctrl(In/Out) interface with handshake lines,

or via uart(In/Out). The ctrlSel input switches between the two control interfaces.

RF data interface:

Data signal input and output are handled via adc(Re|Im) and dac(Re|Im). The interface operates at 80MS/s, i.e.

oversampling by a factor 4 is applied. ADC/DAC data is 12 bit and 2’s complement, range [-2048..2047]. Data

is read from adc(Re|Im) or written to dac(Re|Im) whenever signals adc_or = 1 or dac_ir = 1, respectively. The

handshake signals are needed for system clock frequencies above 80MHz. For exactly 80MHz, adc_or and

dac_ir must be 1 permanently.

RF control interface:

The RF is controlled by rxOn, txOn, and paOn, to switch on/off the RX path, the TX path, and the power

amplifier, respectively. The 3-wire serial bus used in many RF chips to control internal settings is mapped to

twb(Clk|Dat|En). AGC is provided by 16 parallel attenuation lines attn and a corresponding output ready signal.

Other:

Status LEDs indicate the internal state of the IP core. 16 general purpose output signals gpo can be programmed

arbitrarily via the message interface. Similar, up to 16 general purpose input signals gpi can be read.

c© Ingenieurbüro BAY9, Dresden, Germany 9

c

b2b1

a2a1
1

Version 22.04.01

1.5 Evaluation vs. full featured version

The evaluation version differs from the full version as follows:

• Packet reception is restricted to 6Mbit/s for arbitrary packet length, and 54Mbit/s at length 1000 bytes.

The TX path is fully functional.

• Most file header descriptions are removed from the sources in the evaluation version.

• Module regression tests are not provided.

10 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

2 Getting started

2.1 Overview

This section provides an example how to:

• Synthesize the WLAN IP core

• Boot and configure the core

• Test basic messages and TX

• Transmit data packages between 2 cores via a virtual RF and evaluate the results

In order to ease these initial steps, this package additionally provides:

• An example Verilog module wlanX where the WLAN core is embedded in a minimum setup

• Bash scripts to synthesize module wlanX using Altera Quartus, Xilinx Vivado, and Xilinx ISE

• Example control message handlers in Octave/Matlab to access the WLAN IP core

• An example Octave/Matlab backend function to send messages to the FPGA via UART

None of the above is needed to use the WLAN IP core. Rather, the core will typically be included into a customer

specific system, maybe use control messages implemented in C, Perl, etc instead of Octave/Matlab, and possibly

be accessed via the generic parallel interface instead of the UART.

Throughout this section however, extensive use will be made of the supplementary functions to get the wlanX

example module running. Module wlanX is shown in figure 3 and explained in more detail in section 2.4 below.

2.2 Prerequisites

Build scripts and message control functions are provided for Bash and GNU/Octave, respectively. They will run

equally on Linux or on Microsoft Windows with Cygwin installed.

Assuming the HW setup given in figure 2, a USB-to-UART converter should be attached to the PC. Default UART

speed settings are up to 2Mbaud, which is typically provided by these converters.

Currently tested software versions are

• Octave 4.0.2

• Altera Quartus 16.0

• Xilinx Vivado 2015.04

• Xilinx ISE 14.7 (legacy)

• Cygwin 1.7.2 on Windows 7

All examples below run with the free/web edition versions of Altera Quartus and Xilinx Vivado/ISE.

2.3 Minimum setup

Basic system test is possible by connecting only 7 signals, clk, resetIn, ctrlSel, uartIn, uartOut, adc_or, and

dac_ir. An example is given in figure 2. Applying the system clock and setting ctrlSel=1 (UART control) allows

booting and control of the internal logic. The UART signals can be connected directly to a PC (or any other

host) with a UART interface. Board resets are typically active low, so this signal might need to be inverted to

fit the active high resetIn input. DAC/ADC handshake must be set dac_ir=1, adc_or=1 in order to use TX + RX

messages.

c© Ingenieurbüro BAY9, Dresden, Germany 11

c

b2b1

a2a1
1

Version 22.04.01

Fig. 2: Minimum test setup example

2.4 Example module wlanX

2.4.1 Description

For basic testing it is useful to embed the WLAN core into another system. An example setup is displayed

in figure 3. Top level module wlanX adds a PLL, clock/reset lines, an LED output, a UART interface, and a

mux/demux network to the WLAN IP core.

The mux/demux network connects all unused outputs to all unused inputs. While this is useless functionally, it

prevents synthesis tools from removing internal logic during optimization, so the synthesis output provides real

resource requirements and the achievable clock frequency.

Fig. 3: Minimum example wrapper wlanX for top module wlan_0

12 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

2.4.2 Build

Altera-Quartus / Xilinx-Vivado

In order to build with Altera-Quartus or Xilinx-Vivado, go to directory ./tst/(altera|xilinx) and run script ./(al-

tera|xilinx)Compile. Synthesis results are in the corresponding directory ./tst/(altera|xilinx)/out. Build examples

are provided for

• Artix 7 XC7A200TFBG484-2, 80 MHz clock, UART speed 2MHz

• Cyclone IV EP4CE115F29, 40 MHz clock, UART speed 1MHz

Configuration files can be found in ./tst/(altera|xilinx)/cfg. Before building for your own setup, you might want to

change:

• The FPGA device to build for

• Physical PIN connections

• Module ./tst/(altera|xilinx)/src/pllX.v for clock generation

• The UART divider depending on baud rate and clock speed, see section 3.3.3

Xilinx-ISE

There is also an example script for legacy Xilinx-ISE. Because ISE has problems to synthesize for 80 MHz on

Artix 7, the timing constraints are relaxed here. Furthermore, synthesis results are not tested anymore. Please

use ISE only in case you need to synthesize for an older device not supported by Vivado.

Board setup

The Xilinx example runs on a ZTEX-2.16 board (+ debug extension) using

- uart(Gnd|In|Out): Pins D30/29/28

- clkExt: 48 MHz on board FX clock

- resetExt: Switch S1-10

- led0: LED1-1

The Altera example runs on a Terasic DE2 115 board using

- uart(Gnd|In|Out): Pins EX_IO[0/1/2]

- clkExt: 50 MHz on board crystal

- resetExt: Push button KEY0

- led0: Green LEDG[0]

Due to limitations of the Cyclone IV, the IP core runs at half the normal clock frequency in this setup (40MHz

instead of 80MHz, 802.11p mode). Therefore, all timings must be multiplied by a factor 2 when compared to the

description in this document.

2.4.3 UART access configuration

Function ./tst/m/uartInit.m is used for configuration of UART access from the PC host. Access is provided via the

Linux device file interface (/dev/ttyXYZ), also available under Windows/Cygwin. The function must be edited and

adapted to the actual device file name, typically /dev/ttyUSBx under Linux and /dev/ttySx under Windows/Cygwin,

and the UART speed. Under Linux, make sure you have read/write access to the /dev/ttyUSBx device file.

2.4.4 Reset

Signal resetExt of test module wlanX signal is active low. Note that this is different from the internal WLAN core

signal resetIn which is active high, cf. figure 3. A short pulse resetExt = 0 resets the system. See also section

3.1 for details.

c© Ingenieurbüro BAY9, Dresden, Germany 13

c

b2b1

a2a1
1

Version 22.04.01

2.5 Booting and basic messages

2.5.1 Booting and version

After reset, the IP core is in boot mode. The contents of the boot data file ./dat/boot.bin needs to be trans-
ferred via the UART control interface. This can be accomplished in Octave by calling the special control file
./msg/msgWlanBootReq.m:

$ cd ./tst/m

$ octave --traditional --quiet

>> def_MsgId_wlan;

>> msgWlanBootReq;

Booting WLAN OK;

>> msgWlanVersionReq;

Version A.B.C

>>

Successful boot is indicated by

• switching on led0

• a BootCfm message sent from the IP core via the (UART) control interface, cf. section 6.3.30

The BootCfm must be read by the host, which is done in msgWlanBootReq.m. In the example above, an addi-

tional VersionReq message (see section 6.3.25 and section 6.3.54) is sent.

After booting, the IP core is in operation mode. All control messages can be used. Rebooting is only possible after

another reset. Details about messages are described in section 6. Matlab/Octave messages example message

handlers are located in directory ./msg.

See also section 3.2 for details and other possibilities to initialize memories and start the system.

2.5.2 Basic TX test

TX testing is possible if wlanX is extended such that the dac(Re|Im) and/or the paOn/txOn lines are connected

to a logic analyzer, oscilloscope or similar and monitored. Using module wlanX as provided, only the messages

connected with a TX request can be tested. In order to start a TX, the following messages need to be sent:

• CfgTxDataSrcReq

Selects the internal data generator and sets up the number of TX bytes, cf. section 6.3.17

• TxReq in timer mode 0

Starts a transmit with the same number of bytes defined in CfgTxDataSrcReq and an arbitrary TX mode.

The timing values are not important in timer mode 0, cf. section 6.3.5

While message CfgTxDataSrcReq responds with the corresponding confirm only, the TxReq is followed by a

TxStartCfm and a TxEndCfm, see figure 7 in section 4.2.

The default settings after booting use zero IF and -10dB TX backOff, the paOn/txOn lines and the BB output

start as fast as possible after reception. It is possible to change this behavior with messages CfgTxScalingReq

(section 6.3.15), CfgBandSelReq (section 6.3.18), and CfgTxTimingReq (section 6.3.16).

2.5.3 Basic RX test

Without applying a valid 802.11a signal at the input, a complete RX test is not possible, internal TX-RX loopback

is not available due to shared use of the FFT.

If an RxReq (section 6.3.6) is sent by the host without an input signal being present, the core confirms the start

with RxStartCfm (section 6.3.33), then returns with an RxAcqEndCfm (section 6.3.34) after the given time (timer

mode 1 + 2), or in response to an RxAcqStopReq (timer mode 0). See figure 10 in section 4.3 for details.

14 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

2.5.4 IP core init + TX test

In order to boot and initialize module wlanX, function setupWlan.m can be invoked. After a short blinking of LED0
the following output can be seen:

>> setupWlan

Boot WLAN

Booting WLAN OK

Version X.Y.Z

Set band selection

Set TX timing

Set TX backoff

Set RX time tracking parameters

Set normal ACQ threshold + normal (automatic) AGC mode

Set CCA to 5500us (max length), 0 dB offset

The following simple test the creates 10 TX frames with random length + modulation scheme:

>> testTx11g

+--------+---+---+------+

| No | S | M | Len |

+--------+---+---+------+

| 0 | 1 | 7 | 2681 |

| 1 | 0 | 0 | 172 |

| 2 | 0 | 2 | 2089 |

| 3 | 0 | 1 | 3377 |

| 4 | 1 | 7 | 916 |

| 5 | 0 | 5 | 1645 |

| 6 | 1 | 1 | 3038 |

| 7 | 0 | 1 | 3828 |

| 8 | 0 | 6 | 3102 |

| 9 | 1 | 5 | 699 |

Parameter S refers to the subsystem. S = 0 is 802.11a, S = 1 is 802.11b. Parameter M is the mode, M = 0..7
corresponds to 6, 9, ..., 54MBit/s for 802.11a, M = 1..7 refer to mode 1l, 2s, 2l, 5.5s, 5.5l, 11s, 11l of 802.11b,

where "s" and "l" stand for short and long header.

2.6 Test build and run including Virtual RF

In order to test the real world behaviour of RX and TX, it is possible to integrate the 802.11a IP core with a virtual

RF (VRF) emulator. An overview is shown in figure 4. Module vrfX consists of

• 2 instances of the WLAN 802.11a IP cores (wlan_0 + wlan_1) used for TX and RX, respectively

• A reduced version of a Virtual RF core providing

– Channel gain setting

– Additive white gaussian noise

– RF gain control based on an arbitrarily defined gain table

The necessary files are not contained in this package. Please download the evaluation version of the VRF IP

core from http://www.bay9.de/products_vrf.html and follow the documentation therein.

c© Ingenieurbüro BAY9, Dresden, Germany 15

c

b2b1

a2a1
1

Version 22.04.01

Fig. 4: Virtual RF wrapper vrfX including vrf_0 and IP core instances wlan_0/1

16 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

3 Description – General aspects

3.1 Reset

3.1.1 Overview

The WLAN core can be reset by a HW signal or a SW message. In addition, an internal self reset feature is

provided that normally puts the core into reset state directly after loading the FPGA.

3.1.2 Hardware reset

HW reset is provided via signal resetIn in figure 1 and is active high. Note that in example setup wlanX in figure

3 the signal resetExt is inverted (thus active low) to be compliant with typical board setups.

It is necessary to wait 128 cycles after HW reset before booting the core, because the internal reset signal is

delayed and kept active during that time. Alternatively, signal resetOut (cf. figure 1) can be monitored, resetOut

= 1 indicates that the internal reset is still active.

3.1.3 Software reset

SW reset is triggered by a ResetReq message sent via the control interface, cf. section 3.3.2 and section 6.3.2.

SW reset normally only works when the core is ready to receive and evaluate messages, i.e., in normal operation

mode after booting. If the systems hangs for some reason, e.g. misconfiguration or similar, then the SW reset

might not work.

If an additional ResetReq is sent while the core is still in boot mode, i.e., directly after a previous SW or HW

reset or loading of the FPGA, then it is captured by the IP core control interface. Because the core cannot handle

messages before being booted/started, detection of the reset is timer based in this case.

In boot mode, the core normally expects packets of 2 data words via the control interface for booting and con-

figuration. A ResetReq is only a single data word. Therefore, if the second data word is missing, a watchdog

triggers reset internally about 222 clock cycles after the ResetReq (or any single word) has been received. One

needs to wait at least 222 cycles or 0.05ms @80MHz after using a SW reset, or monitor signal resetOut for

activity.

3.1.4 Internal self reset

Directly after loading the FPGA, the WLAN core tries to reset itself. This feature is based on an internal 8-bit

counter whose initial state is assumed to be random or all 0s or all 1s directly after loading. This feature might

be unreliable on some FPGAs.

3.1.5 Boot confirm message

The SW reset request has no corresponding confirm. Instead, a BootCfm message (section 6.3.30) is sent from

the WLAN core to the host independent of the type of reset. This confirm is sent only after booting and starting

the core, not directly after reset.

c© Ingenieurbüro BAY9, Dresden, Germany 17

c

b2b1

a2a1
1

Version 22.04.01

3.2 Booting

3.2.1 Using the boot file

After reset, the system is in boot mode. The contents of the boot data file ./dat/boot.bin needs to be transferred

via the control interface (see section 3.3 below). Transferring this file initializes the internal controller memories

and starts the controller. File boot.bin is also provided as boot.hex. Successful boot is indicated by

• a 01010101 pattern at the LED outputs

• a BootCfm message sent from the IP core to the host via the control interface, cf. section 6.3.30

The BootCfm message must be read by the host. After booting, the system is in operation mode. Rebooting is

only possible after another reset.

Section 2.5.1 provides an example how to boot via UART using Octave/Matlab function msgWlanBootReq.m.

Despite its name, this function is not really a request message. Instead, it transfers the boot data to the IP core

and reads the BootCfm.

Another option is to transfer boot.bin via the command line, e.g., cat boot.bin > /dev/ttyUSB0. See also section

3.3.3 for proper UART init in the latter case.

3.2.2 Using the memory init files

Alternatively to section 3.2.1, the memory contents files X16_NNN_(P|D)ram.hex can be used if the con-

troller memory is replaced with preinitialized FPGA block memory. In this case, only the 2 words given in file

X16StartCmd.hex need to be transferred via the control interface to start the IP core operation.

3.3 Control interface

3.3.1 Interface selection

Control interface selection is made via the ctrlSel input. Setting ctrlSel = 0 selects the ctrl lines, while ctrlSel = 1

selects the UART. Both interfaces are functionally equivalent. All control data comes in words of 16 bits.

3.3.2 Ctrl

The ctrl interface is a generic interface with 16 parallel data lines each for input and output (ctrlIn, ctrlOut), and

the corresponding handshake signals described in section 3.5. It is much faster than the UART and can either

be used directly, or adapted to other interface types like SPI etc.

3.3.3 UART

The uartIn and uartOut signals are used to receive and transmit UART data in 8N1 mode (8 bit, no parity, 1 stop

bit). There is no handshaking. Internal processing of the core is sufficiently fast to receive data from uartIn, the

uartOut line must be handled accordingly by the host. In order to handle the 16 bit control data, the UART uses

little-endian format (low byte first).

The default UART speed is 2Mbaud for 80MHz clock frequency. Configuration of parameter WlanUartDivider_C

in file ./src/common/instances/def_Const_wlan.v allows to change the speed. It must be set to

WlanUartDivider_C = round(fclk/ fbaud)−1 (1)

Function ./tst/m/uartInit.m contains the default settings for the UART device file and the UART speed. It also

contains the proper settings to use the UART via the Linux or Windows/Cygwin device file interface (/dev/ttyS0,

/dev/ttyUSB0 or similar). Please edit this function to adjust the UART device file and speed.

18 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

3.4 Control messages and configuration

Fig. 5: Configuration via control messages

Setup of IP core features involve 3 stages, the control message handlers, the firmware control messages, and the

actual signal processing module(s) implemented in Verilog, also called HW module(s) throughout this document,

see also figure 5. Details on messages can be found in section 6.

• Verilog modules (IP core hardware modules):

One or several Verilog modules implement the actual signal processing operation on the FPGA. Such a

module could be an FIR filter, or a CORDIC. HW modules are configured via registers. The configuration

of these HW modules is not done by the user directly. Instead, control messages provide an abstract way

to access the functionality.

• Control messages (IP core firmware functions):

The firmware based control messages are the interface the WLAN IP core provides for host access. A

control message configures HW module registers and possibly memory. Typically, HW module registers

are set directly from the message parameters with little or no calculation being carried out on the internal

message controller. Each control message request has a corresponding confirm. Control messages are

listed in section 6.3.

• Control message handlers (Octave/Matlab or other host software functions):

On the host side, Octave/Matlab example implementations of message handler functions are used to send

data to / read data from the WLAN IP core. The functions either pass parameters directly, or perform

additional calculation using more abstract inputs. E.g., a clock offset might be passed in ppm to the

message handler, the message handler then calculates the necessary fixed point parameters needed

to configure the HW. The messages control handler functions distributed with the IP core do not need

to be used. The user is free to replace or extend them according to his requirements. Control message

handlers are found in directory ./msg.

3.5 Interfaces and handshake signals

3.5.1 Overview

The IP core has several data and control interfaces such as ctrlIn/Out, dacRe/Im, adcRe/Im, etc... An interface

xyz typically comes with corresponding xyz_ir (input ready) and xyz_or (output ready) signals. Data transfer

c© Ingenieurbüro BAY9, Dresden, Germany 19

c

b2b1

a2a1
1

Version 22.04.01

occurs at the positive clock edge following the handshake signals, cf. figure 6.

3.5.2 Inputs

For inputs (xyzIn), the input ready signal xyzIn_ir is an output indicating to the connecting module that the input

xyzIn is ready to accept data. The output ready signal xyzIn_or is an input controlled by the connecting module

to indicate that data is available.

Data is transferred if xyzIn_ir=1 and xyzIn_or=1 simultaneously. If signal xyzIn_or is not available, the connecting

module must supply data each time xyzIn_ir=1. If signal xyzIn_ir is not available, the input will accept data at any

time with data transfer occuring if xyzIn_or=1 is set by the connecting module.

3.5.3 Outputs

For outputs (xyzOut), the output ready signal xyzOut_or is an output indicating to the connecting module that

the output xyzOut has data available. The input ready signal xyzOut_ir is an input controlled by the connecting

module to indicate that data can be accepted.

Data is transferred if xyzOut_ir=1 and xyzOut_or=1 simultaneously. If signal xyzOut_ir is not available, the con-

necting module must accept data each time xyzOut_or=1. If signal xyzOut_or is not available, the output will

provide data at any time with data transfer occuring if xyzOut_ir=1 is set by the connecting module.

Fig. 6: Data transfer

3.5.4 Summary

In order to connect an IP core input (xyzIn) with a corresponding output (xyzOut) of a connecting external module

assumed to have the same type of interface (or v.v.), connection must be made as

• assign xyzIn = xyzOut

• assign xyzIn_or = xyzOut_or

• assign xyzOut_ir = xyzIn_ir

Data transfer signaling is depicted in figure 6. Full handshaking does not always make sense, e.g. it is provided

for ctrlIn/Out, but in some other cases, one of the signals is omitted.

3.5.5 Partial use of handshaking lines

Full handshaking does not always make sense. It is provided only for ctrlIn/Out. In all other cases, one of the

signals is omitted. E.g., for the ADC connection, there is only the adc_or input available. While the IP core logic

can wait for valid data from the ADC (if the system clock is higher than the interface clock) indicated by adc_or=1,

the ADC cannot wait for the IP core. Details are given in the sections below.

20 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

3.6 Data interface

3.6.1 Overview

Input and output data is transferred 16-bit wise via the interfaces dataTx and dataRx, respectively. The first byte

is in the lower 8 bit of the 16-bit word. In case an odd number of bytes is transferred, the upper 8 bit of the last

16-bit word are ignored at TX / invalid at RX.

3.6.2 TX data input

The TX input interface requests input data shortly after the TxReq message has been sent and indicates this

by setting dataTx_ir = 1, see section 4.2 for details of the TX control flow. Data is read at the following positive

clock edge. Different from the ctrlIn control interface, dataTx does not wait for data. Instead, it assumes data

to be available for reading when dataTx_ir goes high. The host must supply this data once it has started TX

processing.

Handshake line dataTx_or is currently unused.

In order to create a correct CRC-32 of the payload data, the last 4 bytes must be zero. Transmission works

correctly even if the last 4 bytes are non-zero, however, the CRC-result of message RxEndCfm in section 6.3.36

will be wrong.

3.6.3 RX data output

The RX output interface starts transmitting data some microseconds after a valid header detection (RxHdrCfm

message) has been sent to the host and indicates this by setting dataRx_or = 1, see section 4.3 for details of

the control flow. Data is written at the following positive clock edge. Different from the ctrlOut control interface,

dataRx does not wait to write the data. Instead, it assumes the host to be able to accept data as soon as it is

available for writing, i.e., when dataRx_or goes high. The host must accept this data once it has received the

RxHdrCfm message.

3.7 ADC/DAC interface

Signals adc(Re|Im) / dac(Re|Im) operate at 80MS/s. Internal interpolation / decimation filtering by a factor 4 with

respect to the 802.11a baseband sample rate of 20MS/s is provided to simplify analog filtering. For the default

minimum system clock of 80MHz, adc(Re|Im) / dac(Re|Im) read/write a data sample in each clock cycle. The

handshake lines adc_or and dac_ir must be set to 1 continuously in this case.

Because internal processing is data driven, arbitrary system clocks higher than 80MHz can be used. In this

case, the ADCs/DACs must be connected through a FIFO or similar to signals adc(Re|Im) / dac(Re|Im) and will

not read/write a data sample in each clock cycle. Valid reads/writes from/to the IP cores DAC outputs / ADC

inputs must be indicated by setting dac_ir = 1 / adc_or = 1.

c© Ingenieurbüro BAY9, Dresden, Germany 21

c

b2b1

a2a1
1

Version 22.04.01

4 Frame transmission and reception

4.1 TX/RX message control flow and timing

4.1.1 Overwiew

IP core processing is initiated by sending a message via the control interface. There are 3 types of messages:

control, TX, and RX. All messages are described in detail in section 6. While control requests have a corre-

sponding confirm that is returned directly after the execution of the message, TX and RX requests involve a

state machine described in section 4.2 and section 4.3, respectively. The host must implement the counterpart

of these state machines.

In any case, sending a new request is only allowed after the previous request has been processed by the system

and confirmed. There is no way to interrupt a request with exception of RxAcqStopReq, see section 4.3.

For all messages, example message handler functions are implemented in Matlab/Octave. They can be found in

directory ./msg. In case of control messages, these functions handle the request and the corresponding confirm.

In order to deal with the complexity of the RX/TX state machines in different situations, separate request and

confirm message handler functions are provided for TX and RX, while combined functions msg...Run.m handle

the state machines. Details are described in section 4.2 and section 4.3.

Fig. 7: TX processing control flow

4.2 TX request

General remark

The description in this chapter refers to the TxImmReq, which means using one of TxImmAReq and TxImmBReq,

reflecting the inclusion of the 11b-transmitter functionality with separate TX immediate messages. Despite the

22 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

TX11b being included into the system, its use is strongly discouraged. The feature is not yet tested properly, and

the corresponding receiver is still under development.

4.2.1 Control flow

The message control flow for TX is depicted in figure 7. The host initiates a transmission by sending a TxReq

or TxImmReq message. The state machine (for normal TxReq, not TxImmReq) is handled by function ms-

gTxRun.m.

In case of TxImmReq or TxReq in timer mode 0, the IP core starts the TX sequence as fast as possible, i.e.,

after 0.25µs for TxImmReq and after 1µs for TxReq. The core responds with a TxStartCfm and "Timing OK"

indication. It then waits for the end of TX processing and additionally returns a TxEndCfm after the frame has

been sent.

In case of a TxImmReq, the TX sequence is started immediately upon the reception of the message ID word

and the host must complete the message (length, mode) directly after that, i.e., as fast as possible within the

next cycles. For that reason, TxImmReq cannot be used via the UART. Parameter transmission at UART speed

would take too much time.

For TxReq, the system first waits for the complete message to be received and starts the TX sequence after-

wards.

If the host uses TxReq in timer mode 1 or 2 (i.e., start after or at a given time, cf. section 6.3.5), the timing is

checked first. If the calculated start time is sufficiently in the future (≥ 31 baseband timer ticks or 1.55µs), the TX

procedure continues as described above at the requested time. Otherwise, a TxStartCfm with a "Timing Error"

is returned, but no TxEndCfm.

Figure 8 shows the begin of the TX start sequences in the different cases.

Fig. 8: TX start timing after TX request message

Fig. 9: TX sequence start and end timing

c© Ingenieurbüro BAY9, Dresden, Germany 23

c

b2b1

a2a1
1

Version 22.04.01

4.2.2 Start sequence timing

A transmission begins with a TX start sequence as shown in figure 9. It depends on parameters PaDelay, TxDe-

lay, and BbDelay set by the CfgTxTimingReq message. If all parameters are set to 1, the txOn and paOn lines

go high immediately, and the DAC BB output starts about 0.2µs later. All 3 timings can be delayed individually by

using the CfgTxTimingReq message, cf. section 6.3.16. Once adjusted, these additionaly delays are fixed and

independent of the timing given in the TxReq message.

4.2.3 Number of bytes

Although arbitrary transmissions from 1-4095 bytes are possible in principle, the last 4 bytes must always be

zero in order to get a correct CRC result at the receiver. If less than 5 bytes are transmitted, the CRC will show

an error even if data is received correctly.

4.3 RX request

Fig. 10: RX processing control flow

24 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

4.3.1 Control flow

The RX processing control flow is depicted in figure 10. The IP core first evaluates the timer mode of the incoming

RxReq message , i.e., whether the request is timed (timer mode = 1 or 2) or not (timer mode = 0).

In the first case, the timing is evaluated. If the end time is less than 5µs in the future, the system returns

immediately with an RxStartCfm and an RxAcqEndCfm message, the latter indicating a timing error. Otherwise,

the end time is set, the timer IRQ is enabled, and the RX acquisition is started. For an untimed RxReq message,

the acquisition is started immediately.

If no frame is detected, the acquisition is stopped by the timer IRQ (timer mode 1 or 2) or if the host sends an

RxAcqStopReq (timer mode 0).

Fig. 11: RX timing for mode=1 (search for given time), no frame detected

In case a frame is detected, the core first returns an RxAcqEndCfm (sync indication) immediately after detection,

and an RxHdrCfm containing all relevant frame data after header decoding. Correct header demodulation is

checked via the header parity bit and Viterbi decoding metrics.

If the header has been received correctly, the frame is processed normally and the RxEndCfm is sent when the

CRC result is available.

If the header was corrupted, the IP core can wait for the input signal to drop below -62dBm before returning. The

threshold is checked once per microsecond. This feature is required by the IEEE standard. However, because

it is not necessary in all situations, it is switched off by default and must be enabled explicitly via message

CfgCcaReq, cf. section 6.3.13. The final RxEndCfm is sent in any case with a special header failed flag instead

of the CRC result.

The RX state machine is handled by function msgRxRun.m, which itself consists of msgRxRun1.m / ms-

gRxRun2.m for start of the RX and reception handling, respectively. Functions msgRxRun1|2.m call the actual

message handlers msgRxReq.m, msgRxStartCfm.m, msgRxAcqEndCfm.m, msgRxHdrCfm.m, and msgRxEnd-

Cfm.m.

4.3.2 Timing

If the RX acquisition is supposed to search for a given time (timer mode = 1) and if no frame is detected, the

corresponding timing is shown in figure 11. About 4µs are needed internally to setup the acquisition and stop it

at the end. This time is subtracted from the defined search time. Therefore, the core does not really search for

the time defined in the RxReq message, but rather returns after the time given, counted from the moment it has

received the message.

Similar, if the end time is specified (timer mode = 2), the system returns at the time specified in the RxReq

message, and stops internal operation a bit earlier.

c© Ingenieurbüro BAY9, Dresden, Germany 25

c

b2b1

a2a1
1

Version 22.04.01

The end timing in case a frame is detected is shown in figure 12. The processing delay is varies in the range

5-10µs depending on frame length and modulation/coding scheme. Processing delay is defined as the time

needed from the moment the last sample of a frame enters the RX-BB buffer until the RxEndCfm including the

CRC result is sent to the host. About 1µs later, the rxOn signal returns to 0.

Fig. 12: RX end timing after frame detection

4.4 TX/RX configuration overview

4.4.1 AGC

AGC configuration is done via messages CfgAgcReq and CfgAgcTblReq. Normal operation needs to select

AGC mode 2 with an initial attenuation of 0dB in CfgAgcReq, the AGC attenuation and pin table settings are

described in detail in section 5.3. The possibility to use a fixed attenuation value (AGC mode 1) should be used

only for testing.

4.4.2 Time tracking

The CfgTtReq message is used to set some parameters needed by the internal tracking algorithms. They are

depending on the carrier frequency fc. The calculations defined in section 6.3.14 must be executed in floating

point. Alternatively, if floating point calculation is not available on the host, the values can be taken from a

precalculated table containing the data for all possibly used carrier frequencies.

4.4.3 TX baseband output level

The TX-BB output level can be set by message CfgTxScalingReq, see section 6.3.15. The default value of

10dB backoff is optimum in terms of EVM. Saturation occurs for higher values. Lower values do not necessarily

decrease the EVM as long as the DAC resolution is sufficient.

4.4.4 TX start timing

Message CfgTxTimingReq can be used to delay the pin activation for paOn and txOn, and/or to delay the

baseband DAC output if required by the RF. Details are described in section 4.2 and figure 9. In most cases, the

default behaviour which enables the pins and starting the BB DAC output as fast as possible should be sufficient.

4.4.5 TX data source selection

TX data can be created internally using CfgTxDataSrcReq or taken from input dataTx, see section 6.3.17. The

default setting is to use data from input dataTx. If the internal data generation is selected, the message must

be sent again before each TX request, and the number of bytes of the TxDataSrcReq and the Tx(Imm)Req

message must be equal.

26 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

4.4.6 Band and ADC selection

The ADCs and DACs operate at 80MS/s and are able to transmit a complex valued signal at -20/0/+20MHz.

Band reversal is possible as well. The behavior is selected by the first two parameters of the CfgBandSelReq

message.

If properly filtered on the RF side, only a single DAC/ADC is needed at the BB. Any input at adcIm will be ignored

if single ADC operation is selected by the third parameter of CfgBandSelReq, see section 6.3.18.

4.4.7 System clock and timer

The internal timer counts at the 802.11a baseband sample rate of 20MS/s, therefore timer prescaling is set to

1/4 by default, corresponding to the default system clock of 80MHz. Reception and transmission of frames can

be based on the 32 bit timer.

In case a higher system clock frequency is used, the timer prescaling must be set accordingly through message

CfgTimerPrescaleReq, cf. section 6.3.23. As parameters p (numerator) and q (denominator) of message Cfg-

TimerPrescaleReq are 32 bit each, the most simple is to set p = 20000000, while setting q = system clock in

Hz.

The current timer value can be read via message GetTimeReq, see section 6.3.24.

4.5 IQ sample debug buffering

4.5.1 Overview and configuration

For debugging purposes, IQ samples can be buffered using message IqBufModeReq, see section 6.3.27. In-

stead of writing IQ samples directly from TX baseband to the TX-DAC outputs, or from the RX-ADC inputs to

the RX baseband, samples are stored intermediately in a debug buffer. The buffered data can then be used the

feed the TX-DAC or the RX baseband later.

It is also possible to write/read the IQ sample buffer via messages IqBufWriteReq / IqBufReadReq, cf. section

6.3.28 and section 6.3.29, respectively. This way, arbitrary frames can be sent via TX-DACs and/or fed into the

RX baseband. Captured frames can be analyzed in Matlab or similar tools.

Most buffer modes have a NumSmpl parameter that may limit using the complete buffer space. In addition, when

capturing RX frames, data buffering starts only if the input exceeds a certain threshold, this way providing a

simple detection mechanism.

The buffer size is determined by parameters WlanIqBufNumSmpl_C and WlanIqBufAdrWidth_C in file

./src/common/instances/def_Const_wlan.v. The address width must be set to log2(number of samples). Both

parameters are set to small values by default in order to save FPGA resources when debug buffering is not

needed.

4.5.2 IQ buffer modes

Mode 0 – Reset:

Mode 0 resets the debug buffering feature and switches the IP core back to normal operation. It is necessary to

use mode 0 each time after one of modes 1..5 have been used, before reusing a mode or switching to another

one. Resetting does not delete the buffer contents.

Mode 1 – RX-RF → Buffer:

Mode 1 allows to capture RX frames from ADC. Capturing starts when the absolute value of the real/imag part

c© Ingenieurbüro BAY9, Dresden, Germany 27

c

b2b1

a2a1
1

Version 22.04.01

of an RX input sample exceeds the threshold set by message IqBufModeReq. The threshold is an unsigned 11

bit integer value.

Mode 2 – TX-BB → Buffer:

Mode 2 captures a frame from the TX baseband. The buffer must be setup first, then the TX request message

can be sent.

Mode 3 – Buffer → RX-BB:

Mode 3 writes the buffer contents to the RX baseband. The buffer must be setup first, then the RX request

message can be sent.

Mode 4/5 – Buffer → TX-RF:

Mode 4 starts a single write of the buffer contents to the TX DACs. In mode 5, the buffer contents is given out

repeatedly.

Mode 6 – Check RX trigger:

Different from the other modes, mode 6 does not initiate a buffer transfer, but checks if a trigger event has

occured in mode 1 (RX-RF → Buffer). The status is returned in the 2nd confirm parameter, see in IqBufModeCfm

in section 6.3.56.

Possible system crash:

Beware that the system might crash if the debug mode is not used properly. E.g., if you try to capture a TX

baseband frame, but the number of samples is insufficient to buffer the whole frame, then the TX request might

not return. Likewise, if you feed a valid RX frame header into the RX baseband from the buffer, but the frame as

a whole is insufficient in length, then the RX request might not return. Note that both, TX and RX, need some

extra samples at the end for proper operation.

28 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

5 RF interface

5.1 Prerequisites

5.1.1 AGC response time

The response to AGC line changes must be less then than 0.5µs. After that time, the input level must not vary

anymore by more than 1dB.

5.1.2 Oscillator stability

Any instability of the carrier frequency after switching from RX to TX, especially while transmitting the short

and long symbols preamble, can influence the ability of the another receiver to estimate the frequency offset

correctly. Similar, the carrier frequency must be stable while the RF attenuation lines are switched during AGC

operation in order to guarantee proper frequency estimation during reception.

The short term carrier frequency deviation due to transients (e.g. switching of RX/TX/PA and / or AGC control

signals) must be less than 10kHz during short symbols, and less than 2.5kHz during long symbols.

Note that this has nothing do with the range of the carrier frequency offset correction capability. Offset correction

is possible up to ±1subcarrier. Time tracking works up to ±50ppm.

5.1.3 Baseband and RF oscillator coupling

The carrier frequency and the baseband clock must be derived from the same source. Otherwise, time tracking

does not work properly and the reception of long frames might be corrupted. Time tracking parameters are

derived from the accumulated frequency/phase at the receiver and therefore dependent on the actual carrier

frequency, cf. section 6.3.14. The IP core supports carrier frequencies between 20MHz and 20GHz.

5.2 RF pin connections

5.2.1 Rx/Tx/PaOn

The signals rxOn, txOn, and paOn are intended to activate the RF-RX path, RF-TX path, and the power amplifier,

respectively. All signals are active high. See section 4.2 and section 4.3 for the exact pin timings in relation to

frame transmission and reception.

5.2.2 Attenuation

Up to 16 parallel attn signals are available to control the RF attenuation. The pin settings can be configured via

message CfgAgcTblReq, see section 5.3 for details.

The attn_or signal goes high for the first cycle after a change of the attn outputs. This feature can be used to

initiate a parallel to serial conversion or similar if required by the RF. If the RF is connected to the parallel attn

outputs directly, registering is not needed, as the signals are registered internally and keep their value until the

next change occurs. The attn_or output can be left unconnected in this case.

c© Ingenieurbüro BAY9, Dresden, Germany 29

c

b2b1

a2a1
1

Version 22.04.01

5.2.3 Three wire bus

Programming the RF is possible via the 3-wire serial bus interface using output signals twb(Dat|Clk|En), see also

figure 1. Pin control follows the typical scheme, applying data to twbDat, sending a short pulse at twbClk while

the data is valid, and finishing the transmission with a short pulse at the twbEn pin, see figure 13 for details.

The clock frequency is about 4MHz with pulses being 37.5ns wide. Three wire serial bus operation is started by

message CfgTwbReq, cf. section 6.3.20.

Fig. 13: Three wire serial bus control

Note that 3-WB control is firmware based and relatively slow. Hence, it cannot be used for AGC or other time-

critical control issues.

5.3 AGC calibration

5.3.1 Overview

The internal AGC table consists of 70 entries, ideally corresponding to attenuation settings from 0dB (highest

RF gain) to 69dB (lowest RF gain), LUT[0..69]. All 70 LUT entries must be set independent of the number of

settings the real RF provides. Each of the LUT entries uses the best matching real RF gain setting. If the RF

provides gain settings in steps that are > 1dB, then some settings will be assigned to multiple LUT entries. If

the RF has very fine grained gain settings, then some of them will not be used.

RF gain table calibration is a 2-step procedure

• First, the RF gain setting mapped to LUT[0] must be found

• Second, the remaining RF gain steps are mapped to LUT[1..69]

5.3.2 Calibration of attenuation step 0

The RF gain corresponding to LUT[0], i.e., the highest gain to be set by the IP core, must be found first. This is

not necessarily the highest gain the RF provides.

Instead, one of the gains the RF provides needs to be selected such that the baseband noise input level at this

gain reaches about -30dB FS (full scale, possibly a bit higher). This corresponds to an input amplitude RMS of

about 10−30/20 ·29 = 16.2 for the 10 bit / 20MS/s baseband input data.

Remark: Although the external ADC interface has 12 bit, internal operation after RX filtering works with 10 bit

only at the 20MS/s BB input. Due to the unknown noise bandwidth and the digital RX filters, it is not possible to

define the target level directly at the ADC inputs.

In order to find the RF gain setting for the desired input level, one needs to step through all possible RF gains

(starting with the highest) and check the BB input level. The level can be obtained by lowering the acquisition

threshold, see section 6.3.19, so that noise is "detected", and then running the normal RxReq, which reports the

level in the confirm message, see section 6.3.35. In detail:

• Message CfgAgcTblReq is used to fill the LUT with pin combinations for all possible gain settings of the

RF chip. Assignment is arbitrary, but in the easiest case one would assign LUT[0] = highest gain, LUT[1]

= second highest gain, etc ... The only thing important is to be able to set the RF gain manually for testing

using AGC mode 1 with CfgAgcReq. The attenuation values required by message CfgAgcTblReq can all

be set to 0, they are not needed here.

30 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

• The RX acquisition detection threshold must be lowered via message CfgAcqThrReq, see section 6.3.19.

This yields almost immediate "detection" of WGN input.

• The system must be set to the highest gain using message CfgAgcReq for a fixed attenuation, i.e., setting

AGC mode 1, starting with LUT[0].

• RX request message must be sent continuously, and the BB amplitude returned with the RxHdrCfm mes-

sages must be monitored. If the average level is below 16, the HW setup should be changed to provide a

higher gain. Otherwise, the tests are continued with lower RF gains until the measured BB input level is

just a bit over 15.

The RF gain setting found by the above procedure is used as highest gain (LUT[0]) addressed by the IP core.

Ideally, it should also be (one of) the highest possible gains the RF provides in order to achieve a good noise

figure.

In terms of performance, it is no problem to select another RF gain for LUT[0] with BB input noise level > 15 as

long as the noise level drives the ADCs reasonably. Reception works without degradation, however, the dynamic

range of the AGC is more limited at the upper end. In other words, if dynamic the range of the AGC is not an

issue, the accuracy of the procedure is not critical, one can just use any roughly suitable RF gain for LUT[0].

An example implementation of the above procedure is implemented in ./tst/m/test/setupWlanAgc.m. Function

setupWlanAgc is executed during the setup with the virtual RF core, see description in section 2.6 and the

reference therein.

5.3.3 AGC table configuration

The RF gain setting found by the procedure in section 5.3.2 has 0dB attenuation by definition and is placed at

LUT[0]. RF settings with higher gain are not used. All RF settings with lower gain are defined relative to LUT[0].

They must be mapped as close as possible to the remaining attenuation steps 1-69 of the AGC table.

E.g., assume the RF hardware has further gain steps that are [2.3, 4.7, 7.4, 9.9, 12.0, ...]dB lower. The mapping

to the LUT then looks as shown in table 1.

Attn (ideal) 0 1 2 3 4 5 6 7 8 9 10 11 ...

Actual RF attn 0.0 0.0 2.3 2.3 4.7 4.7 4.7 7.4 7.4 9.9 9.9 12.0 ...

Attn table entry 0 0 2 2 5 5 5 7 7 10 10 12 ...

Tbl. 1: RF attenuation mapping to baseband AGC table

The actual RF gain is first mapped to the closest hypothetical attenuation, e.g., 0.0dB is mapped to 0 and

1, 2.3dB is mapped to 2 and 3, 4.7dB is mapped to 4, 5, and 6, and so on. The attenuation values are then

rounded to the next integer. These values, together with the corresponding pin settings, are used as table entries

for message CfgAgcTblReq, see section 6.3.9.

5.4 DC offset correction

5.4.1 Overview

Baseband DC offset correction is possible for RX and TX. In both cases, the correction values are 12 bit complex

and simply added to the baseband values directly before feeding the DAC or receiving data from the ADC,

respectively.

In addition to the configuration of correction values (cf. section 5.4.2 and section 5.4.3), DC offset correction

must be switched on explicitly using message CfgDcOffCorrReq, see section 6.3.10.

c© Ingenieurbüro BAY9, Dresden, Germany 31

c

b2b1

a2a1
1

Version 22.04.01

5.4.2 TX

TX DC offset correction uses a single correction value which is set via message CfgDcOffCorrTxReq, see section

6.3.11.

5.4.3 RX

RX DC offset correction is LUT based and depends on the current AGC settings. Similar to the AGC configura-

tion, RX DC offset correction features 70 lookup values, one for each gain setting. The values are configured via

CfgDcOffCorrRxReq, see section 6.3.12. LUT values are automatically selected when a certain gain is applied,

no matter if the AGC is enabled, or if gain is selected manually.

Calibration of the RX DC offset correction values is possible by manual gain selection in combination with data

IQ buffer reception, cf. section 4.5, mode 1.

32 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

6 Messages

6.1 Overview

The IP core is controlled via the message interface. All messages can be used with the UART or the ctrl lines

equivalently, the only exception being WLAN messages TxImm(A|B)Req.

The first word of a message is always the message ID. After the message ID, an arbitrary number of parameters

can follow, see section 6.3 below. Message IDs are autogenerated and subject to change with a new release

without special notice. In order to avoid problems when switching to an updated version of the IP core, one of

the files def_MsgId.h/m should be used.

Matlab/Octave example implementations of message handlers can be found in the ./msg directory. In some

cases, these handlers transfer parameters directly to the IP core, in other cases, they perform intermediate

calculation from more abstract parameters. The handlers make use of function sendMsg.m using the generic

format

c f m = sendMsg(id,req,nC f m)

where req is the request message, nC f m is the length of the expected confirm message, and c f m is the confirm

message itself. All values are 16 bit, req and cfm are row vectors. Variable id is a struct selecting a specific

target IP core to deliver the message. It is explained in more detail in section 6.2.

6.2 Targets and forwarding

Fig. 14: Message handling and forwarding

Each control message handler passes variable id to function sendMsg.m. Variable id is a struct with arbitrary

fields used by sendMsg.m to identify the target of the message. Function sendMsg.m is typically depending on

the target the message is sent to (wlanX / vrfX). It might use the following struct fields:

c© Ingenieurbüro BAY9, Dresden, Germany 33

c

b2b1

a2a1
1

Version 22.04.01

core: Type of IP core to be addressed, e.g. ’vrf’ to configure the VRF, or ’wlan’ to configure WLAN PHY cores.

inst: Instance number, e.g., 0, 1, ..., referring the to a specific instance of a certain type of IP core if there is

more than one. E.g., in figure 4 there are 2 WLAN IP cores with instance numbers 0 for TX and 1 for

RX, respectively.

The vrfX example in figure 4 has 3 different targets, core = ’vrf’ / inst = 0, core = ’wlan’ / inst = 0, and core = ’wlan’

/ inst = 1. Figure 14 shows how messages are sent to different targets via a single control interface. Variable id

may contain additional fields that are used with other (testing) versions of sendMsg.m. If id.core = ’wlan’, function

sendMsg.m calls msgVrfCtrl(Rd|Wr)Req.m with the WLAN message as payload, thereby redirecting the WLAN

control message to the ctrlIfPhy(0|1)(In|Out) interface in figure 4.

If only a simple Verilog module like wlanX with a single WLAN core is used, then function sendMsg.m can access

the UART (or whatever) interface directly, ignoring all settings of variable id.

6.3 Definitions

6.3.1 Message ID numbering

Message IDs might seem weird as they start at an arbitrary position with some "holes" in between. This is due

to test/debug messages that are not distributed with the commercial version of the IP core. All message IDs

are autogenerated and may change with a new version of the core. Please use the files def_MsgId_vrf.h/m in

directory ./msg or converted versions thereof.

6.3.2 MsgId 24 – ResetReq

Purpose

System reset request

Parameters

None

Description

ResetReq initiates a SW reset of the system. The SW reset might not work in case the system has crashed

completely, e.g., due to misconfiguration. In this case, a HW reset via signal resetIn is necessary. Different from

other messages, ResetReq does not have a corresponding confirm.

6.3.3 MsgId 25 – TxImmAReq

Purpose

Start TX-11a immediately request

Parameters

1. TX mode

0-7 → 11a: 6..54 MBit/s

2. TX length in bytes, 1-4095

Description

TxImmAReq starts a TX immediately after the message ID is received without waiting for the mode and length

parameters. The host must provide mode and length within 2µs after the message ID, otherwise the system will

crash. Therefore, TxImmAReq must not be used with the UART control interface. See section 4.2 for details on

timing and control flow.

34 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

6.3.4 MsgId 26 – TxImmBReq

Purpose

Start TX-11b immediately request

Parameters

1. TX mode

1-7 → 11b: 1l, 2s, 2l, 5.5s, 5.5l, 11s, 11l

2. TX length in bytes, 1-4095

Description

TxImmBReq starts a TX immediately after the message ID is received without waiting for the mode and length

parameters. The host must provide mode and length within 0.2µs after the message ID, otherwise the system

will crash. Therefore, TxImmBReq must not be used with the UART control interface. See section 4.2 for details

on timing and control flow.

6.3.5 MsgId 27 – TxReq

Purpose

Start TX based on timer request

Parameters

1. TX mode

0-7, bit15=0 → 11a: 6..54 MBit/s

1-7, bit15=1 → 11b: 1l, 2s, 2l, 5.5s, 5.5l, 11s, 11l

2. TX length in bytes, 1-4095

3. Timer mode:

0: start as fast as possible

1: start after given delay

2: start at given time

4. Lower 16 bit of timing

5. Upper 16 bit of timing

Description

TxReq starts a timer based TX. Different from TxImmAReq, it starts the transmission only after all parameters

are received completely by the IP core.

In timer mode 0, the TX sequence starts after about 1µs. Timing parameters 4+5 are ignored in this case.

In timer mode 1, the TX starts after the given number of timer ticks, while in timer mode 2, the system waits until

the given time is reached before starting TX. The earliest start time is 30 timer ticks in the future, counted from

the moment the message is sent to the IP core. If the given start time is less than 30 ticks in the future or if the

delay is less than 30, the system returns with a timing error instead of starting TX, see section 6.3.31 and 4.2

for details on timing and TX state machine.

One timer tick is equivalent to the BB sample rate of 20MS/s.

6.3.6 MsgId 28 – RxReq

Purpose

Start RX acquisition request

Parameters

c© Ingenieurbüro BAY9, Dresden, Germany 35

c

b2b1

a2a1
1

Version 22.04.01

1. Timer mode:

0: search until explicitly stopped by RxAcqStopReq

1: search for given time

2: search until given time is reached

2. Lower 16 bit of the timing

3. Upper 16 bit of the timing

Description

RxReq starts the RX acquisition. In any case, the acquisition ends when an 802.11a frame is received. Depend-

ing on the timer mode, it may also stop without receiving a frame.

In timer mode 0, the acquisition can be stopped by sending an RxAcqStopReq. The RxAcqStopReq is ignored,

if a frame has been detected before the request is received the system.

In timer mode 1, the acquisition runs for the given time, while in timer mode 2, the acquisition runs until the

given time is reached. The system then returns automatically to idle mode if a frame has not been received.

The minimum useful time to run the acquisition is about 5µs. If used with less, the system returns immediately

without searching for signals.

The RxAcqStopReq must not be used in timer mode 1 or 2 due to possible IRQ conflicts. Details of the state

machine and timing are given in section 4.3.

One timer tick is equivalent to the BB sample rate of 20MS/s.

6.3.7 MsgId 29 – RxAcqStopReq

Purpose

Stop RX acquisition request

Parameters

None

Description

RxAcqStopReq stops the RX acquisition. The RX-ACQ should have been started before in timer mode 0. The

request is ignored if the system is not in acquisition mode anymore, e.g. because a frame has been detected.

6.3.8 MsgId 30 – CfgAgcReq

Purpose

AGC configuration request

Parameters

1. Run mode, 1 = fixed gain setting, 2 = normal AGC operation

2. Fixed (mode 1) / initial (mode 2) attenuation step, 0-69

Description

CfgAgcReq switches between a fixed gain setting (mode=1) and normal AGC operation (mode=2). The fixed

/ intial attenuation parameter selects the fixed (mode=1), or initial (mode=2) attenuation step, where one step

typically corresponds to 1dB.

Mode 1 is typically used for testing. In mode 2, the initial attenuation must be set to 0 if the AGC table has been

configured properly, cf. section 5.3 and 6.3.9. After reset, AGC is switched off completely using the entry LUT[0].

36 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

6.3.9 MsgId 31 – CfgAgcTblReq

Purpose

AGC table configuration request

Parameters

1. Attenuation of the step 0

2. AGC pin output of step 0

3. Steps 1..69 to follow ...

Description

CfgAgcTblReq configures the AGC attenuation table and the AGC pin settings as required by the RF. This

message has 140 parameters, one pin setting and one AGC attenuation for each AGC step.

The attenuation values corresponds to real attenuation steps of the RF, see section 5.3 for details. The pin

settings are mapped directly to the 16 attenuation output lines.

6.3.10 MsgId 32 – CfgDcOffCorrReq

Purpose

DC offset correction configuration request

Parameters

1. 0/1 = DC offset correction off/on

Description

CfgDcOffCorrReq switched the DC offset compensation off or on. The correction is off by default.

6.3.11 MsgId 33 – CfgDcOffCorrTxReq

Purpose

TX DC offset value configuration request

Parameters

1. DC offset correction value (real part)

2. DC offset correction value (imag part)

Description

CfgDcOffCorrTxReq configures the TX DC offset. Different from RX DC offset compensation, there is only a

single value.

6.3.12 MsgId 34 – CfgDcOffCorrRxReq

Purpose

RX DC offset table configuration request

Parameters

1. DC offset correction for attenuation step 0 (real part)

2. DC offset correction for attenuation step 0 (imag part)

3. Steps 1..69 to follow ...

Description

CfgDcOffCorrRxReq configures the AGC dependent RX DC offset table. This message has 140 parameters,

real and imag part of the DC offset correction value for each AGC attenuation step. The values are 12 bit signed.

c© Ingenieurbüro BAY9, Dresden, Germany 37

c

b2b1

a2a1
1

Version 22.04.01

6.3.13 MsgId 35 – CfgCcaReq

Purpose

Clear channel assessment configuration request

Parameters

1. Timeout in microseconds

2. Offset calibration in dB [-15..+15]

Description

CfgCcaReq configures the way the IP core waits for a clear channel after a failure during header decoding. The

timeout in microseconds determines how long the system waits for the end of a signal. It should be set a bit

longer than the maximum expected frame length. Timeout = 0 is used to switch off waiting completely.

According to the 802.11a standard, the system needs to check the signal being less than -62dBm before return-

ing. In order to determine the corresponding threshold, the IP core assumes the RX input level being -94dBm at

gain step 0 and a baseband amplitude of 16. This is roughly correct for a noise figure of 7dB and RF calibration

according to section 5.3. In case the RF differs significantly from the assumption, the offset calibration parameter

can be used to shift the threshold by up to ±15dB.

The feature is switched off by default, i.e. the IP core returns directly after a header error.

6.3.14 MsgId 36 – CfgTtReq

Purpose

Time tracking configuration request

Parameters

1. Time tracking factor mantissa

2. Time tracking factor shift

3. Time tracking jump low word

4. Time tracking jump high word

Description

CfgTtReq sets the time tracking parameters. The parameters are used to derive time tracking correction phases

from the accumulated phase shift due to frequency offset. Therefore, depending on the carrier frequency fc, they

are calculated as:

ttExp = ⌊log2(fsc/ fc)⌋+18

ttShi f t = 2ttExp

ttMant =
⌊

fsc/ fc/2ttExp−32
⌋

ttJump = round(216 · fc/(64 fsc))

(2)

where 20MHz ≤ fc ≤ 20GHz is the carrier frequency and fsc = 312.5kHz is the subcarrier spacing. Parameter

ttExp is only needed for intermediate calculation, the actual shift is executed via multiplication on the controller.

Parameter ttJump is 32 bit and must be split into low/high 16 bit. Time tracking can be switched off by setting all

parameters to 0 (default).

38 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

6.3.15 MsgId 37 – CfgTxScalingReq

Purpose

TX scaling configuration request

Parameters

1. TX scaling factor, 0..32767

Description

CfgTxScalingReq sets a linear TX baseband scaling factor between 0 and 32767. The DAC backoff

with respect to a full scale signal (RMS of the complex signal = 2047) is calculated as backO f f Db =
−20log10(scaleT x/25693). The default value is 8192 corresponding to 10dB DAC backoff. A backoff below

10dB (i.e., scaleT x > 8192) yields signal saturation/distortion and hence performance loss at higher order

modulation schemes.

6.3.16 MsgId 38 – CfgTxTimingReq

Purpose

TX timing configuration request

Parameters

1. Delay to switch on PA pin

2. Delay to switch on TX pin

3. Delay to start BB processing

Description

CfgTxTimingReq allows configuration of TX start timing sequence, i.e., to modify the timing relation between

switching on the txOn / paOn pins and the start of the TX-BB DAC output. The delay is given in BB samples

of 20MHz. All values must be in the range 1-65535, the default is 1. See section 4.2 for details. If the clock

frequency differs from the DAC/ADC sample frequency, message CfgTimerPrescaleReq, section 6.3.23 must be

used in addition to ensure timing is working correctly.

6.3.17 MsgId 39 – CfgTxDataSrcReq

Purpose

TX data source configuration request

Parameters

1. Source selection, 0=external, 1=internal

2. Number of bytes of internal data source (1..4095)

3. Start value for internal data source (0..255)

Description

CfgTxDataSrcReq switches between internally generated data (for testing) and externally supplied input data

(default, normal operation). When generated internally, the 8-bit values count up the defined number of bytes

from the given start value. The last 4 bytes are always 0 in order to create a correct CRC-32. The message must

be sent before each TX request in this case.

c© Ingenieurbüro BAY9, Dresden, Germany 39

c

b2b1

a2a1
1

Version 22.04.01

6.3.18 MsgId 40 – CfgBandSelReq

Purpose

Band selection / reversal and ADC configuration request

Parameters

1. 3/0/1 → IF = -20/0/+20 MHz

2. 0/1 → Band reversal off/on

3. 0/1 → Dual/Single ADC use

Description

CfgBandSelReq configures the band selection and ADC usage. The DACs and ADCs are always running at

80MHz, so in principle, a single ADC/DAC is sufficient for low-IF operation. Both ADCs/DACs can be used,

however, in order to reduce filter requirements on the RF side. If single ADC is selected, the adcIm input is

ignored. Zero IF, band reversal off, and dual ADC use are selected by default.

6.3.19 MsgId 41 – CfgAcqThrReq

Purpose

Acquisition threshold configuration request

Parameters

1. ThresholdIdx = -1/0 → low/normal threshold

Description

CfgAcqThrReq selects one of several predefined acquistion thresholds by setting the ThresholdIdx.

-1 → Increased sensitivity, for AGC calibration only (see section 5.3.3), many false alarms

0 → Normal sensitivity (default)

6.3.20 MsgId 42 – CfgTwbReq

Purpose

Three wire serial bus configuration request

Parameters

1. DatLo

2. DatHi

3. NumBits

Description

CfgTwbReq writes the lower NumBits bits of the combined data word [DatHi DatLo] to the RF via the 3-wire

serial interface. Details are explained in section 5.2.3.

6.3.21 MsgId 43 – CfgGpoReq

Purpose

General purpose output configuration request

Parameters

1. Dat

2. Mask

Description

CfgGpoReq writes the bits in Dat to the gpo output lines. Only bits where the corresponding Mask bit is set are

written, all others keep their original values. All GPOs are 0 by default.

40 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

6.3.22 MsgId 44 – GetGpiReq

Purpose

General purpose input read request

Parameters

1. Mask

Description

GetGpiReq reads the bits of the gpi input lines. Only bits where the corresponding Mask bit is set are read, all

others values are set to 0.

6.3.23 MsgId 45 – CfgTimerPrescaleReq

Purpose

Configure timer prescale factor

Parameters

1. Prescale numerator p, lower 16 bit

2. Prescale numerator p, upper 16 bit

3. Prescale denominator q, lower 16 bit

4. Prescale denominator q, upper 16 bit

Description

CfgTimerPrescaleReq sets the timer prescaler. The internal timer runs with frequency p/q ·F pgaClk. In order

to receive the correct timing information, the prescale factors need to be set such that the timer counts the BB

frequency (20 MHz), i.e., setting p = BbClk, q = F pgaClk or simplified versions thereof. The default after reset

is p = 1, q = 4 corresponding to the minimum FPGA system clock of 80MHz. CfgTimerPrescaleReq stops,

resets, and restarts the timer.

6.3.24 MsgId 46 – GetTimeReq

Purpose

Get system time request

Parameters

None

Description

GetTimeReq reads the current value of the 32 bit timer.

6.3.25 MsgId 47 – VersionReq

Purpose

Version number read request

Parameters

None

Description

VersionReq reads the version number and evaluation flag, which are returned in VersionCfm.

c© Ingenieurbüro BAY9, Dresden, Germany 41

c

b2b1

a2a1
1

Version 22.04.01

6.3.26 MsgId 48 – LedBlinkReq

Purpose

Led the LEDs blink for a moment

Parameters

1. Blink period in cycles / 220

Description

LedBlinkReq lets all the LEDs blink 4 times.

6.3.27 MsgId 49 – IqBufModeReq

Purpose

Set IQ sample buffer mode

Parameters

1. 0 = Reset/Off (normal operation)
1 = RX-RF → Buffer
2 = TX-BB → Buffer
3 = Buffer → RX-BB
4 = Buffer → TX-RF
5 = Like 4, but continuous cyclic output until switched off
6 = Check trigger state after RX-RF → Buffer

2. Number of samples to write/read

3. Detection threshold for mode 1, range 0..2047

Description

IqBufModeReq configures the IQ sample buffer operation. This message is only for debug purposes and not

needed during normal operation.

6.3.28 MsgId 50 – IqBufWriteReq

Purpose

Write data to IQ sample buffer

Parameters

1. Number of samples to write

2. x(0), lower 16 bit

3. x(0), upper 8 bit

4. x(1), lower 16 bit

5. ...

Description

IqBufWriteReq writes data to the IQ sample buffer. The data is 12 bit complex signed, with [xIm(3:0) xRe(11:0)]

in the lower word, and xIm(11:4) in the upper word.

6.3.29 MsgId 51 – IqBufReadReq

Purpose

Read data from IQ sample buffer

Parameters

1. Number of samples to read

Description

IqBufReadReq initiates reading data from the IQ sample buffer.

42 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

6.3.30 MsgId 63 – BootCfm

Purpose

Confirm system boot

Parameters

None

Description

BootCfm confirms system boot. The message is sent after the booting and must be read by the host. Other

messages must not be sent before BootCfm indicates the end of the boot process.

6.3.31 MsgId 64 – TxStartCfm

Purpose

Confirm TX request

Parameters

1. Status: 0=OK, 1=Timing error

Description

TxStartCfm confirms the TxReq or TxImmAReq. The status parameters indicates a timing error in case of TxReq

with mode=1/2 if the delay was to small (mode=1) or the start time was in the past (mode=2). See section 4.2

for details on timing and state machine.

6.3.32 MsgId 65 – TxEndCfm

Purpose

Confirm TX end

Parameters

None

Description

TxStartCfm confirms the end of a TX. See section 4.2 for details on timing and state machine.

6.3.33 MsgId 66 – RxStartCfm

Purpose

Confirm RX acquisition start request

Parameters

None

Description

RxStartCfm confirms the start of the RX acquisition.

6.3.34 MsgId 67 – RxAcqEndCfm

Purpose

Confirm RX acquisition end

Parameters

1. Status: 0=Stopped, 1=RX setup timing error, 2=Synchronization start

c© Ingenieurbüro BAY9, Dresden, Germany 43

c

b2b1

a2a1
1

Version 22.04.01

Description

RxAcqEndCfm confirms the end of the RX acquisition without frame detection, or the synchronization of a frame.

The message is triggered either by an RxAcqStopReq, by the internal timer, or if a frame is detected. A timing

error indicates that the system returned without starting the acquisition. See section 4.3 for details on timing and

state machine.

6.3.35 MsgId 68 – RxHdrCfm

Purpose

Confirm header decoding

Parameters

1. 0=sync+header OK, 1=header error

2. RX mode, 0-7 → 6-54 MBit/s

3. RX length in bytes

4. Frequency offset, fsc <=> 213

5. RX-BB amplitude (0..256)

6. AGC final attenuation setting

7. Frame start time low

8. Frame start time high

Description

RxHdrCfm confirms the 802.11a header decoding and returns miscellaneous physical layer parameters such as

RX mode and length, frequency offset, RX baseband amplitude (measured in the input buffer), the final AGC

setting, and the frame start time.

The frame start is given in terms of the internal timer value, see section 4.4.7. It indicates the moment when the

first sample was written into the baseband input buffer.

A header error indicates that something went wrong during header decoding. Therefore, the values for RX mode

and length, frequency offset, and frame start are possibly incorrect.

6.3.36 MsgId 69 – RxEndCfm

Purpose

Confirm PSDU decoding end

Parameters

1. 0=CRC OK, 1=CRC Error, 2=header error

Description

RxEndCfm confirms the end of the RX reception and indicates the CRC result. The CRC is only correctly

indicated if the last 4 bytes of the payload data are zero. In case of a header error, the message is sent after

waiting for the end of the noisy signal.

6.3.37 MsgId 70 – CfgAgcCfm

Purpose

Confirm AGC table configuration request

Parameters

None

Description

CfgAgcCfm confirms execution of CfgAgcReq.

44 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

6.3.38 MsgId 71 – CfgAgcTblCfm

Purpose

Confirm AGC table configuration request

Parameters

None

Description

CfgAgcTblCfm confirms execution of CfgAgcTblReq.

6.3.39 MsgId 72 – CfgDcOffCorrCfm

Purpose

Confirm DC offset configuration request

Parameters

None

Description

CfgDcOffCorrCfm confirms execution of CfgDcOffCorrReq.

6.3.40 MsgId 73 – CfgDcOffCorrTxCfm

Purpose

Confirm TX DC offset table configuration request

Parameters

None

Description

CfgDcOffCorrTxCfm confirms execution of CfgDcOffCorrTxReq.

6.3.41 MsgId 74 – CfgDcOffCorrRxCfm

Purpose

Confirm RX DC offset table configuration request

Parameters

None

Description

CfgDcOffCorrRxCfm confirms execution of CfgDcOffCorrRxReq.

6.3.42 MsgId 75 – CfgCcaCfm

Purpose

Confirm clear channel assessment configuration request

Parameters

None

Description

CfgCcaCfm confirms execution of CfgCcaReq.

c© Ingenieurbüro BAY9, Dresden, Germany 45

c

b2b1

a2a1
1

Version 22.04.01

6.3.43 MsgId 76 – CfgTtCfm

Purpose

Confirm time tracking configuration request

Parameters

None

Description

CfgTtCfm confirms execution of CfgTtReq.

6.3.44 MsgId 77 – CfgTxScalingCfm

Purpose

Confirm TX scaling configuration request

Parameters

None

Description

CfgTxScalingCfm confirms execution of CfgTxScalingReq.

6.3.45 MsgId 78 – CfgTxTimingCfm

Purpose

Confirm TX timing configuration request

Parameters

None

Description

CfgTxTimingCfm confirms execution of CfgTxTimingReq.

6.3.46 MsgId 79 – CfgTxDataSrcCfm

Purpose

Confirm TX data source configuration request

Parameters

None

Description

CfgTxDataSrcCfm confirms execution of CfgTxDataSrcReq.

6.3.47 MsgId 80 – CfgBandSelCfm

Purpose

Confirm band selection and reversal configuration request

Parameters

None

Description

CfgBandSelCfm confirms execution of CfgBandSelReq.

46 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

6.3.48 MsgId 81 – CfgAcqThrCfm

Purpose

Acquisition threshold configuration confirm

Parameters

None

Description

CfgAcqThrCfm confirms execution of CfgAcqThrReq.

6.3.49 MsgId 82 – CfgTwbCfm

Purpose

Three wire bus configuration confirm

Parameters

None

Description

CfgTwbCfm confirms execution of CfgTwbReq.

6.3.50 MsgId 83 – CfgGpoCfm

Purpose

General purpose output configuration confirm

Parameters

1. Updated GPO value

Description

CfgGpoCfm confirms execution of CfgGpoReq and returns the updated GPO value.

6.3.51 MsgId 84 – GetGpiCfm

Purpose

General purpose input read confirm

Parameters

1. GPI input data (masked)

Description

GetGpiCfm confirms execution of GetGpiReq and returns the masked input value.

6.3.52 MsgId 85 – CfgTimerPrescaleCfm

Purpose

Confirm timer prescale setting

Parameters

None

Description

CfgTimerPrescaleCfm confirms execution of CfgTimerPrescaleReq.

c© Ingenieurbüro BAY9, Dresden, Germany 47

c

b2b1

a2a1
1

Version 22.04.01

6.3.53 MsgId 86 – GetTimeCfm

Purpose

Confirm get timing request and return the global 32 bit timer

Parameters

1. Lower 16 bit of global 32 bit timer

2. Upper 16 bit of global 32 bit timer

Description

GetTimeCfm returns the current internal timer value in response to a GetTimeReq. See section 4.4.7 for details

on the timer.

6.3.54 MsgId 87 – VersionCfm

Purpose

Confirm version request and send version number

Parameters

1. Major version

2. Branch version

3. Tag version

4. Evaluation flag, 0 = full version, 1 = eval version

Description

VersionCfm returns the 3 digit version number and the evaluation flag in response to a VersionReq.

6.3.55 MsgId 88 – LedBlinkCfm

Purpose

Confirm LED blink request

Parameters

None

Description

LedBlinkCfm confirms execution of LedBlinkReq.

6.3.56 MsgId 89 – IqBufModeCfm

Purpose

Confirm setting IQ buffer mode

Parameters

1. RX trigger flag, 0 = not triggered, 1 = triggered

Description

IqBufModeCfm confirms the execution of IQ buffer mode setting. The RX detection flag only applies to mode 6,

when the request checks if RX capturing has been triggered.

48 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

6.3.57 MsgId 90 – IqBufWriteCfm

Purpose

Confirm writing data to the IQ sample buffer

Parameters

None

Description

IqBufWriteCfm confirms writing data to the IQ sample buffer.

6.3.58 MsgId 91 – IqBufReadCfm

Purpose

Confirm reading data from the IQ sample buffer

Parameters

1. x(0), lower 16 bit

2. x(0), upper 8 bit

3. x(1), lower 16 bit

4. ...

Description

IqBufReadCfm confirms reading data from the IQ sample buffer. The data is 12 bit complex signed, with [xIm(3:0)

xRe(11:0)] in the lower word, and xIm(11:4) in the upper word.

c© Ingenieurbüro BAY9, Dresden, Germany 49

c

b2b1

a2a1
1

Version 22.04.01

7 Test benches

7.1 Prerequisites

Simulation has been tested under Linux using the free Icarus Verilog simulator, see http://iverilog.icarus.com.

Postprocessing extracts lines from files using sed, and file comparison is done using the diff command. These

tools should be installed with any standard Linux distribution or Cygwin.

7.2 Top level test benches

7.2.1 Overview

Top level test benches can be found in the ./reg/top subdirectory. A test bench simulates messages via the

ctrl interface and provides inputs / collects outputs for either TX or RX frames. All steps like reset, booting,

configuration, and TX/RX frames are covered.

7.2.2 Test scope and concept

In order to stimulate the WLAN IP core, its interfaces are connected to standard buffers containing the data

written to inputs or read from outputs. For the ADC input / DAC output, additional IO-rate setting is provided

to allow emulation of the IP core running at higher clock frequency than the ADC/DAC sample rate. Due to

the half duplex nature of the IP core, buffers are shared for data byte input/output, and for ADC/DAC sample

input/output. The setup overview is shown in figure 15. The UART and the X16 controller are not used during

Verilog simulation, see section 7.4.

Fig. 15: Top test bench overview

7.2.3 Operation

During Verilog simulation, the AdcDac and DataTxRx buffer memories are initialized by the outer test bench

wrapper TbV from files abc|ghi.in.dat. At the end of the simulation, output stub memories are read and dumped

50 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

to files def|jkl.out.dat. Request messages are written to / confirm message are read from the IP core via buffers

CtrlIn / CtrlOut, respectively. Corresponding files are msgMMMM_msgXyzReq/Cfm.dat. All data files are located

in the ./dat subdirectory.

There are no references for the output files. Instead, for most tests, a Matlab/Octave script tbNNNN_eval.m

provides a partial evaluation or visualization of the output. In most cases it is necessary to inspect the traces in

./out/TbV.vcd to verify the results.

7.2.4 Invocation

In order to run a Verilog simulation, change to directory ./reg/top/tbNNNN and run ./runTbv.

7.3 Module level test benches

7.3.1 Overview

Module test benches can be found in the ./reg/mod subdirectory. The test bench concept is signal processing

oriented, test benches for other modules, e.g. irqCtrl, uart16, etc... are not provided. In some cases (modules

mod11a, tx11a, and rx11a) there is a separate test bench used in order to include the FFT otherwise shared

between RX and TX.

7.3.2 Test scope and concept

The module under test (here: xyz) is connected to stubs writing to and reading from inputs and outputs, see

figure 16 for details. These stubs are included in Tb_0. Additional control is provided in TbV.v. The separation

splits the test bench into an inner part that can be synthesized (Tb_0), and an outer part which cannot (TbV).

TbV can be replaced to run the test bench in real time on the FPGA board, see section 7.4.

Fig. 16: Test bench overview

c© Ingenieurbüro BAY9, Dresden, Germany 51

c

b2b1

a2a1
1

Version 22.04.01

Each module consists of a number of standard interfaces and components plus additional module specific in-

ternal logic. Inputs and outputs can be either for data transfer (e.g. Input a, Output c) with full handshaking and

possible FIFO connection to the module under test, or control lines (e.g. Control Input b, Control Output d) in

figure 16. A dedicated test stub is connected to each type of interface, tbInp, tbCli, tbOutp, and tbClo. The ap-

pendix of the stub instance matches the interface name. Although figure 16 shows exactly one interface of each

type, the number is arbitrary and varies from module to module.

Furthermore, the stub tbReg is connected to the module under test, reading from and writing to the internal bus

in order access externally accessible control registers (Eregs abc, def), and possibly write and read messages

(not shown in figure 16). A module can further contain internal state registers (Iregs) and memories that may or

may not be tested depending on the test bench configuration.

Files a.mdat, a.time, b.mdat, ... etc define the data and the clock cycle when the data is written from the stub to

module xyz inputs. Likewise, stub tbReg is configured by files reg.dat and reg.tarw, defining data, time, register

address, and if data is read from or written to the internal bus. At the outputs, files c.time and d.time define the

clock cycles when data is read by stubstbOut and tbClo.

The simulation collects output data in stubs tbOut , tbClo, and tbReg for later evaluation.

7.3.3 Operation

During Verilog simulation, the stub memories are initialized by the outer test bench wrapper TbV. At the end of

the simulation, output stub memories are read and dumped into files c.vdat, d.vdat, and reg.vdat, respectively.

These files are located in the out subdirectory. For each .vdat file, there is a corresponding .mdat file containing

the reference data.

File reg.vdat is postprocessed, i.e. the lines containing read data from the internal register bus are extracted and

dumped into separate files for different eregs (here abc.vdat and def.vdat) and possibly messages (not shown in

figure 16).

Internal states and memories can be dumped directly by the Verilog wrapper, although this is used in a few test

cases only.

7.3.4 Invocation

In order to run a Verilog simulation, change to directory ./reg/mod/modules/xyz/tbNNNN and run ./runTbv. In

order to run all test benches available, change to directory ./reg/mod and run ./runVtbAll.

7.3.5 Dumping a VCD file

VCD file dumping is disabled by default. It can be enabled by editing ./reg/mod/modules/xyz/tbNNNN/tbSetup/TbV.v

and enabling the $dumpfile / $dumpVars commands.

7.4 FPGA testing

By replacing the outer wrapper TbV, all test benches can be converted to a synthesizable version. The test

benches include an X16 controller and a UART which are unused during Verilog testing. For FPGA real time

testing, UART lines are connected to FPGA pins and from there to a PC, similar to the setup in figure 2. Memories

of debug stubs are read and written via the UART and the X16 controller. Inputs/outputs, control inputs/outputs,

ereg values and messages can be tested this way, but no internal states or memory contents.

All modules test benches and most of the top level test benches have been run in real time on the FPGA directly

for extended verification. However, this possibility is not made available in this package.

52 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

8 Frequently asked questions

8.1 Applications

I need a proprietary communication system similar to 802.11a, can you provide this based on your IP

core?

That’s one of the ideas behind this product. Wireless LAN is million dollar consumer business. There is no plan

to get into that. But if you need something a bit special, describe your application and we’ll see how to adapt the

IP core.

I would like to build my private WLAN just for fun, can I get a full featured version for free?

Yes, I’d like to see fun projects using this core and I would be happy to support you. Just send me an email.

Will there ever be an 802.11b transceiver, making the 802.11g complete?

Probably yes.

Will there ever be an 802.11n transceiver?

Probably not.

8.2 Matlab/Octave/C references

Are there any reference simulations in Matlab/C or similar?

There are references implemented in Octave 4.0.2. They should be Matlab compatible although that has not

been tested. There is no C-code behind.

Do you plan to make references available?

No. There is quite some tooling and scripting behind that would require significant documentation effort before

other people could use it.

8.3 Verilog implementation + synthesis

Why are there so many unused wires, especially at the module interfaces?

Headers etc. are autogenerated and inputs/outputs are using standard interfaces similar to the one described in

section 3.3.2. In many cases, not all interface handshake signals are used, but there is no need to remove them

manually. Synthesis will do this for you.

Why is this old fashioned Verilog header style used?

The project was once started like that and because module headers and the corresponding instance definitions

are autogenerated, it doesn’t really matter.

What is this strange X16 module?

X16 is a small home grown controller used to configure the HW modules and to handle the messages.

Why are there so many warnings during compilation?

You can safely ignore all of them. Below there is a list of typical warnings from Altera-Quartus, for Xilinx-

ISE/Vivado it’s similar.

"...truncated value with size 31/32 to match size of target (N)"

This is when a decimal value (integer by default) is assigned to a register or wire. Many constants etc... are

autogenerated from Matlab/Octave definitions and don’t have a bit width definition.

"... object "xyz" assigned a value but never read"

All interfaces between modules are autogenerated. Depending on the application, some of the handshake lines

might not be used, so they are left unconnected.

"... Net ’abc’ at xyz has no driver or initial value, using a default initial value ’0’"

Same as before, typically these are unused interface handshake lines.

c© Ingenieurbüro BAY9, Dresden, Germany 53

c

b2b1

a2a1
1

Version 22.04.01

"... case item expression never matches the case expression"

This is a warning bug occurring when indexed parts of 2-dimensional register arrays are used in the case

statement. The synthesis does work.

"... Converted the fan-out from the tri-state buffer ... into an OR gate"

Well, FPGAs seem to prefer OR gates, no need to worry.

8.4 RF interface

Can I connect an RF with a serial interface for AGC etc... ?

Yes, but you have to be aware of the strict timing requirements of 802.11a or use a proprietary MAC protocol.

Do you support any other interfaces?

The interface is kept as generic as possible. If you need any parallel-to-serial conversion or similar, you have to

add it yourself.

54 c© Ingenieurbüro BAY9, Dresden, Germany

Version 22.04.01

c

b2b1

a2a1
1

9 License

9.1 General

The Verilog sources, data files, message example applications – also referred to as the "code" – and the docu-

mentation distributed in this package are under copyright.

By downloading and using the code, you accept the license terms defined in this section.

9.2 Limited liability

You accept that the code comes without warranty for any particular purpose. The copyright owner will not be

liable for any damage caused by the code.

9.3 Restrictions

You are not allowed to copy or redistribute the code.

You are not allowed to change the code with exception of minor modifications that do not change the original

functionality, e.g., replacing memory models or fixing compile problems. You accept that these minor modifica-

tions do not lay foundation to any copyright on your side.

You are not allowed to remove the functional restrictions of the evaluation version.

Use of additional test code, Matlab/Octave scripts etc... is only permitted to evaluate the IP core.

9.4 Non-private use

Non-private use includes any application of this code related to your job or other professional activity, commercial,

non-commercial, academic, military or whatever.

Non-private users are allowed to evaluate this code. Evaluation comprises all steps necessary to assess its

usability for your project such as

• inspecting the sources

• simulation of the code

• synthesizing the code for FPGA or similar

• embedding the code into a larger system

• bring-up of a test system including RF and MAC

Before you start using the code for your project purpose, you must obtain a commercial license.

9.5 Private use

You are allowed to use this code free of charge for private purposes.

c© Ingenieurbüro BAY9, Dresden, Germany 55

c

b2b1

a2a1
1

Version 22.04.01

References

[1] IEEE Computer Society

IEEE Std 802.11T M-2007

IEEE, 3 Park Avenue, New York, NY 10016-5997, USA

56 c© Ingenieurbüro BAY9, Dresden, Germany

