al

—> % >(1) = -
C
Y Y Y
>
bl b2
- >
Virtual RF IP

(© Ingenieurbiiro BAY9, Dresden, Germany

Ingenieurbliro BAY9
Nordstr. 40

01099 Dresden / Germany
+49 351 7924700
info@bay9.de
http://www.bay9.de

Version 10.04.01

Contents

1 Introduction 9
1.1 SCOPE . . . o o 9
1.2 Deliveryfilestructure L 9
1.3 Features e 9
1.4 OVEIVIEW L e 10

1.4.1 System e e e e 10
1.4.2 RF/channelemulation 11
1.4.3 PHYlayercontrol 11
1.5 Evaluation vs. full featured version L 11

2 Getting started 12
2.1 OVerVIEW e 12
2.2 Prerequisites L e 12
2.3 Example module vriX'. L 12

2.3.1 Description L 12
2.3.2 Minimumsetup 13
2.3.3 Build . .. 13
2.3.4 UART access configuration e 14
235 Reset 14
2.4 Bootingand basic messages 14
241 Bootingandversion. L 14
2.4.2 Configuration 15
2.4.3 Datatransmission L 16

3 Description — General aspects 18

3.1 Reset . . . L 18
311 OVerview e e e 18
3.1.2 Hardwarereset L 18
3.1.3 Softwarereset 18
3.1.4 Internalselfreset L 18
3.1.5 Bootconfrmmessage e 18

3.2 Booting e e 19
3.2.1 Usingthebootfile 19
3.2.2 Usingthe memory initfiles 19

3.3 Controlinterface L 19
3.3.1 Interface selection 19
3.3.2 Ctrl . . 19

© Ingenieurbliro BAY9, Dresden, Germany 3

a
= = Version 10.04.01
3.8.3 UART . . . e 19
3.3.4 Message handling + forwarding L 20

3.4 Control messages and configuration 20
3.5 Interfaces and handshake signals L 21
3.5.1 Overview e e 21
3.5.2 Inputs L e 21
353 Outputs e e 21
354 Summary e e e 22
3.5.5 Partial use of handshaking lines 22

4 RF emulation 23
4.1 OVEIVIEW o o e e e e 23
411 SUMMArY . . . o e e e e e e e e e e 23
41.2 TX . o e 23
4.1.3 Channel e 23
414 BRX e 24

4.2 VRFon/off e e e 24
4.3 TX-DAC . . . e e 24
4.3.1 Functional description L e 24
432 HWoperation e 25
433 FWecontrolmessage e e e e e 25
4.3.4 Hostcontrol message handler L 25

44 TX-Inputscaling e e e 25
4.41 Functional description L e e e 25
442 HWoperation e e e 25
443 FWeceontrolmessage o e e e e e 26
4.4.4 Hostcontrol message handler L 26

45 TX-DCoffset e 26
451 Functional description 26
452 HWoperation e e e e 26
453 FWecontrolmessage o i i e e e e e 26
454 Hostcontrol message handlero 27

46 TX-lQimbalance e e 27
4.6.1 Functional description L 27
4.6.2 HWoperation e e e e 27
46.3 FWecontrolmessage e 27
4.6.4 Hostcontrol message handler 28

4.7 TX-Poweramplifier e 28
4.7.1 Functional description e e 28

4 © Ingenieurbliro BAY9, Dresden, Germany

a 2
Version 10.04.01 = =
4.7.2 HWoperation e 28
47.3 FWcontrolmessage e 28
4.7.4 Hostcontrol message handlero 29
4.7.5 Example setup functiono 29

4.8 Channel - Multipath e 30
4.8.1 Functional description L 30
4.8.22 HWoperation e e e 30
48.3 FWcontrolmessage e 30
4.8.4 Hostcontrol message handler Lo 31

4.9 Channel - Frequency offset 31
4.9.1 Functional description L 31
4.9.2 HWoperation e 31
493 FWcontrolmessage e e 31
49.4 Hostcontrol message handlero 32

4.10 Channel - Clock offset 32
4.10.1 Functional description L 32
4.10.2 HWooperation e 33
4.10.3 FWcontrolmessage e 34
4.10.4 Host control message handler 34
4.10.5 Example setup functiono 34

411 Channel - Gain e e 34
4.11.1 Functional description 34
411.2 HWoperation L 35
4113 FWeceontrol message L 35
4.11.4 Host control message handler 35

412 RX-AWGN . . . o e e e 35
4.12.1 Functional description 35
4122 HWoperation 36
4123 FWeceontrol message o 36
4.12.4 Host control message handler L 36

413 RX-Gaincontrol 37
4.13.1 Functional description 37
4.13.2 HWoperation e e 37
413.3 FWeceontrol message L 37
4.13.4 Host control message handler 38
4.13.5 Example setup functiono 39
414 RX-DCoffset 39
415 RX-lQimbalance e 39
4.16 RX-Saturation e 39

© Ingenieurbliro BAY9, Dresden, Germany 5

Version 10.04.01

5 Physical layer control 40
5.1 OVerview e e e 40
5.2 Message forwarding L e 40
5.3 Data transmission + reception L L 40

5.3.1 Overview e e e 40
5.3.2 TXbuffer filling via control interface Lo L oL 41
5.3.3 TXbuffer filling via data generator oo 41
5.3.4 Starting transmissionof TXdata 41
5.3.5 Startingreceptionof RXdata 41
5.3.6 RXbuffer read/check viadatasink oo 41
5.3.7 RXbufferread viacontrolinterface Lo Lo 41
5.4 General purpose IOPINS L L 41

6 Messages 42
6.1 OVErvIeW e e e 42
6.2 Targetsandforwarding L 42
6.3 Definitions 43

6.3.1 Message IDnumbering L 43
6.3.2 Msgld24 —ResetReq 43
6.3.3 Msgld25-0nOffReq 43
6.3.4 Msgld26—CtriWrReq 44
6.3.5 Msgld27 —CtrIRdReq 44
6.3.6 Msgld 28 —DatBufRxReadReq 44
6.3.7 Msgld 29 —DatBufRxStartReq 44
6.3.8 Msgld 30 — DatBufRxCheckReq 45
6.3.9 Msgld 31 —DatBufTxFillReq 45
6.3.10 Msgld 32 — DatBufTxWriteReq 45
6.3.11 Msgld 33 —DatBufTxStartReq 45
6.3.12 Msgld 34 — CfgRxGainTblReq 46
6.3.13 Msgld 35 — CfgRxIgimbReq 46
6.3.14 Msgld 36 — CfgRxDcOffReq o 46
6.3.15 Msgld 37 — CfgDacRateReq L 47
6.3.16 Msgld 38 — CfgMultiPathReq 47
6.3.17 Msgld 39 — CfgFreqOffReq 47
6.3.18 Msgld 40 — CfgCIKOffReq o o o 48
6.3.19 Msgld 41 — CfgTxInpScReq 48
6.3.20 Msgld 42 — CfgTxDcOffReq o o o 49
6.3.21 Msgld 43 — CfgTxlgimbReq 49
6.3.22 Msgld 44 —CfgTxPaReq 49

6 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

6.3.23 Msgld 45 — CfgTxPaLutReq 49
6.3.24 Msgld 46 — CfgChGainReq 50
6.3.25 Msgld 47 — CfgGpoReq 50
6.3.26 Msgld 48 — GetGpiReq 50
6.3.27 Msgld 49 —VersionReq 51
6.3.28 Msgld 50 —LedBlinkReq e 51
6.3.29 Msgld 55 —BootCfm L 51
6.3.30 Msgld 56 — OnOffCfm e 51
6.3.31 Msgld 57 —CtrIWrCfm e 51
6.3.32 Msgld 58 — CtrIRACfm e 52
6.3.33 Msgld 59 — DatBufRxReadCfm L 52
6.3.34 Msgld 60 — DatBufRxStartCfm 52
6.3.35 Msgld 61 — DatBufRxCheckCfmo 52
6.3.36 Msgld 62 — DatBufTxFillCfm 53
6.3.37 Msgld 63 — DatBufTxWriteCfm o 53
6.3.38 Msgld 64 — DatBufTxStartCfm 53
6.3.39 Msgld 65 — CfgRxGainTbICfm 53
6.3.40 Msgld 66 — CfgRxlgimbCfm 53
6.3.41 Msgld 67 — CfgRxDcOffCfm 54
6.3.42 Msgld 68 — CfgDacRateCfm 54
6.3.43 Msgld 69 — CfgMultiPathCfm o 54
6.3.44 Msgld 70 — CfgFreqOffCfm 54
6.3.45 Msgld 71 — CfgCIKOffCfm e 54
6.3.46 Msgld 72 — CfgTxInpScCfm 55
6.3.47 Msgld 73 — CfgTxDcOffCfm o 55
6.3.48 Msgld 74 — CfgTxIlgimbCfm 55
6.3.49 Msgld 75 — CfgTxPaCfm 55
6.3.50 Msgld 76 — CfgTxPaLutCfm 55
6.3.51 Msgld 77 — CfgChGainCfm 56
6.3.52 Msgld 78 — CfgGpoCfm e 56
6.3.53 Msgld 79 — GetGpiCfm 56
6.3.54 Msgld 80 — VersionCfm e 56
6.3.55 Msgld 81 —LedBIinkCfm 56

7 License 57
7.0 Generalo e 57
7.2 Limited liability 57
7.3 Restrictions L 57
7.4 Termsofuse L 57

© Ingenieurbliro BAY9, Dresden, Germany 7

Version 10.04.01

© Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01 >
1 Introduction
1.1 Scope
This document describes Ingenieurbiro BAY9's Virtual RF IP core.
1.2 Delivery file structure
The delivery contains 5 subdirectories:
dat: Boot data file and memory contents / start command files
doc: This documentation
msg: Message ID definitions and example functions of control message handlers in Matlab/Octave.
src: Verilog sources
src/common: Miscellaneous general purpose modules
src/modules: Signal processing and control modules
src/top: The top module vrf.v and a corresponding instance definition vrf_0.v that can be
included into the Verilog file containing the VRF IP core
tst: Test build examples
tst/altera: Build script and configuration files for Altera-Quartus
tst/xilinx: Build script and configuration files for Xilinx-Vivado
tst/xilinxlIse: Build script and configuration files for legacy Xilinx-Ise
tst/m: Matlab/Octave example setup test scripts
tst/wlan: Verilog source files, boot data, and Matlab/Octave scripts needed to connect two

802.11a/p IP cores to the VRF IP core.

1.3 Features

The BAY9 Virtual RF (VRF) is an IP core written in Verilog, that allows to emulate most system aspects of a
typical RF transmission. The emulation covers TX and RX impairments of typical real world RF circuits (noise,
IQ imbalance, PA non-linearities, clock/frequency offset, etc...), RF features such as gain control, and channel
impairments such as multipath fading.

When connected to a physical layer (PHY) core, the VRF IP core replaces a real RF device with respect to
most aspects between TX-DAC output and RX-ADC input, thereby allowing verification and test of the PHY
implementation in (almost) real time. Consequently, the IP core can be used to speed up creation of bit / frame
error rate curves and for parameter optimization.

The core does not use any vendor specific HW blocks and runs on Altera and Xilinx FPGAs.
Main features summary:

e Control via message API

e Internal data generation and checking

e Control message forwarding from/to PHY core(s)

e Covers the following aspects of typical RF chains
— DAC simulation, i.e., requesting p samples during ¢ clock cycles
— TX-1Q imbalance
— TX-DC offset

PA amplitude compression and phase shift

FIR type fading channel

Frequency offset

Clock offset

© Ingenieurbliro BAY9, Dresden, Germany 9

Version 10.04.01

Additive White Gaussian Noise

RX gain control with arbitrary definition of
* Attenuation
* Pin settings
* Delay

RX-1Q imbalance

RX-DC offset

RX-ADC input saturation

1.4 Overview

1.41 System

The IP core overview is shown in figure 1. The complete system can be controlled by messages sent via UART,
cf. section 3.3.3, or via the generic parallel interface called ctrl, cf. section 3.3.2.

dAataPhyOTx
<

»
»

uartOut/in

ctrlOut/In
—>
ctriSel

statLed
—>
gpo N
. L
gpi

Message J
Control

h

F W N A

F N

ctrlPhy0Out
<

<
ctrlPhy0OIn

dac

Module: vrf

dataBuf_phy0 [« datSrc i« L datSnk e dataBuf phyl [
ctrlPhleuL
N extlf_phyO < b extlf_phy]_ : ctriPhylin
PHYO0 control - TX PHY1 control - RX
ainSel
I -f g
E>< = - = i
706 Ela ai9i0iG: 50 5 € e
SigigigiyN EigiXici i Zigi8IT >
00O] SigZiioiig @i ©:iTi.Q
TX Channel RX
RF emulation

clk
resetin

—P
resetOut
e

|

Fig. 1: VRF system overview

The IP core is split into 2 main parts

e RF + channel emulation
e Physical layer control

Basic functionality can be achieved by using only the signals marked in red in figure 1. Status LEDs provide
feedback about the boot process and current state of the IP core.

10

© Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01 =

1.4.2 RF / channel emulation

For RF / channel emulation, it is necessary to connect the DAC output of a physical layer core providing a TX
signal (PHYO0-TX-DAC output) to the VRF dac input, and the VRF adc output to the ADC input of a physical layer
core receiving/decoding the RX signal (PHY1-RX-ADC input), while simultaneously providing a proper gainSel
signal. RF/channel emulation is explained in more detail in section 4.

1.4.3 PHY layer control

Physical layer control provides basic functionality for sending data/messages to or receiving data/messages from
TX + RX physical layer cores. It also includes data buffers and comparison routines. These modules may or may
not be used depending on customer requirements. PHY control is explained in detail in section 5. If not needed,
the buffer memory sizes should be set as small as possible to save FPGA resources, cf. section 5.3.1.

Additionally, general purpose input/output signals gpi/gpo can be used to control the PHY cores, e.g. for reset.

1.5 Evaluation vs. full featured version

In the evaluation version, only the following features are enabled:

e TX scaling

e Channel gain
e AWGN

e Gain control

e PHY control

All other features, DAC sampling simulation, DC offset, IQ imbalance, power amplifier, multipath channel, and
clock/frequency offset are disabled. The corresponding source code is replaced by empty placeholders.

© Ingenieurbliro BAY9, Dresden, Germany 11

Version 10.04.01

2 Getting started

2.1 Overview

This section provides an example how to:

e Synthesize the VRF IP core together with other physical layer TX and RX cores
e Boot and configure the VRF core (and possibly the PHY cores)
e Transmit data packages via the core and evaluate reception results

In order to ease these initial steps, this package additionally provides:

An evaluation version of an 802.11a/p physical layer IP core

An example Verilog module vrfX where the VRF core is connected to a physical layer TX and RX

Bash scripts to synthesize module vrfX using Altera Quartus, Xilinx Vivado, and Xilinx ISE
Example control message handlers in Octave/Matlab to access the VRF and the physical layer cores
An example Octave/Matlab backend function to send messages to the FPGA via UART

None of the above is needed to use the VRF IP core. Rather, the core will typically be connected a customer
specific physical layer core, maybe use control messages implemented in C, Perl, etc instead of Octave/Matlab,
and possibly be accessed via the generic parallel interface instead of the UART.

Throughout this section however, extensive use will be made of the supplementary functions to get the vrfX
example module running. Module vrfX is shown in figure 2 and explained in more detail in section 2.3.2 below.

2.2 Prerequisites

Build scripts and message control functions are provided for Bash and GNU/Octave, respectively. They will run
equally on Linux or on Microsoft Windows with Cygwin installed.

Assuming the HW setup given in figure 3, a USB-to-UART converter should be attached to the PC. Default UART
speed settings are up to 2Mbaud, which is typically provided by these converters.

Currently tested software versions are

Octave 4.0.2

Altera Quartus 16.0

Xilinx Vivado 2015.04

Xilinx ISE 14.7 (legacy)
Cygwin 1.7.2 on Windows 7

All examples below run with the free/web edition versions of Altera Quartus and Xilinx Vivado/ISE.

2.3 Example module vrfX
2.3.1 Description

For basic testing it is necessary to connect the VRF core to a physical layer transmitter and receiver. An ex-
ample setup is displayed in figure 2. The VRF core and 2 WLAN 802.11a/p PHY cores (eval version only) are
embedded into the overall test example module vrfX. Modules instances wlan_0 and wilan_1 serve as TX and
RX, respectively. Submodule pliX must be adapted/replaced by a PLL fitting the external clock and the actual
FPGA.

12 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

ﬂk ¥ 3 - ﬂk
o ¢l 3 o4
3 g| 2 3
ctriSel= 1¢
L G dataPhy0Tx dataPhylRx [« gixidata
TX ctl P ctriPhy0 ctriPhy1 [« RX ctrl
L ctrl % % ctrl J
P| txData - , agc - rxData
wlan_0 dac vrf_0 e wlan_1
(PHY TX) Y (VRF) * (PHY RX)
reset [« gpo0 gpol P reset
F
£
FPGA 3
specific | clk_, £
PLL
X
el |7 - vrfX
3 3
3 3
i 8 /
Vee T/ L

Fig. 2: Example test setup

2.3.2 Minimum setup

All components of vrfX are controlled by a single UART, see section 3.3.3. The VRF core is controlled directly,
while the 2 WLAN PHY cores are controlled via message forwarding, cf. section 3.3.4 and figure 1. For data
packet transmission, reception, and comparison, the VRF PHY control is used, cf. section 5 for details. GPO
signals 0 and 1 reset the WLAN PHY cores. Status LEDs indicate booting of the VRF and the WLAN PHY cores.

2.3.3 Build

Altera-Quartus / Xilinx-Vivado

In order to build with Altera-Quartus or Xilinx-Vivado, go to directory ./tst/(altera/xilinx) and run script ./(al-
tera/xilinx)Compile. Synthesis results are in the corresponding directory ./tst/(altera/xilinx)/out. Build examples

uartOut

vrfX ¢

uartin

A 4

PC

TEPGA

clkExt
resetExt

4/:—Gnd

<
I=}
o

host

| UART |

Minimum Setup

Fig. 3: Minimum hardware setup

© Ingenieurbliro BAY9, Dresden, Germany

13

Version 10.04.01

are provided for

e Artix 7 XC7A200TFBG484-2, 80 MHz clock, UART speed 2 MHz
e Cyclone IV EP4CE115F29, 40 MHz clock, UART speed 1 MHz

Configuration files can be found in ./tst/(altera/xilinx)/cfg. Before building for your own setup, you might want to
change:

The FPGA device to build for
Physical PIN connections

Module ./tst/(altera/xilinx)/src/plIX.v for clock generation

The UART divider depending on baud rate and clock speed, see section 3.3.3

Xilinx-ISE

There is also an example script for legacy Xilinx-ISE. Because ISE has problems to synthesize for 80 MHz on
Artix 7, the timing constraints are relaxed here. Furthermore, synthesis results are not tested anymore. Please
use ISE only in case you need to synthesize for an older device not supported by Vivado.

Board setup
The Xilinx example runs on a ZTEX-2.16 board (+ debug extension) using
- uart(Gnd|In|Out): Pins D30/29/28

- clkExt: 48 MHz on board FX clock
- resetExt: Switch S1-10
- ledVrf/Tx/Rx: LED1-1/9/10

The Altera example runs on a Terasic DE2 115 board using
- uart(Gnd|In|Out): Pins EX_10[0/1/2]

- clkExt: 50 MHz on board crystal
- resetExt: Push button KEYO
- ledVrf/Tx/Rx: Green LEDG[0/6/7]

2.3.4 UART access configuration

Function ./tst/m/uartinit.mis used for configuration of UART access from the PC host. Access is provided via the
Linux device file interface (/dev/ttyXYZ2), also available under Windows/Cygwin. The function must be edited and
adapted to the actual device file name, typically /dev/ttyUSBx under Linux and /dev/ttySx under Windows/Cygwin,
and the UART speed. Under Linux, make sure you have read/write access to the /dev/ttyUSBx device file.

2.3.5 Reset

Signal resetExt of test module vrfX signal is active low. Note that this is different from the internal VRF core
signal resetln which is active high, cf. figure 2. A short pulse resetExt = 0 resets the system. See also section
3.1 for details.

2.4 Booting and basic messages

2.4.1 Booting and version

After reset, the VRF core is in boot mode. The contents of the boot data file ./dat/boot.bin needs to be trans-
ferred via the UART control interface. This can be accomplished in Octave by calling the special control file
./msg/msgVrfBootReq.m:

14 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

$ cd ./tst/m

$ octave --traditional --quiet
>> def_MsgId_vrf;

>> msgVrfBootReq;

Booting OK;

>> msgVrfVersionReq;

Version A.B.C

>>

Successful boot is indicated by

e switching on ledVrf
e a BootCfm message sent from the IP core via the (UART) control interface, cf. section 6.3.29

The BootCfm must be read by the host, which is done in msgVrfBootReq.m. In the example above, an additional
VersionReq message (see section 6.3.27 and section 6.3.54) is sent.

After booting, the VRF core is in operation mode. All control messages can be used. Rebooting is only possi-
ble after another reset. Details about messages are described in section 6. Matlab/Octave messages example
message handlers are located in directory ./msg.

See also section 3.2 for details and other possibilities to initialize memories and start the system.

2.4.2 Configuration

Once the connection the VRF core is successfully established, the PHY control part of module vrfX can be used
to create TX frames at wian_0, pass the samples through the VRF core vrf_0, and receive the frames at wian_1.

Script setupVrf.m first boots and configures the VRF core using the following messages:

msgVrfResetReq: Reset VRF core (SW reset only)

msgVrfBootReq: Boot VRF core (and read version number)

msgVrfOnOffReq: Switch VRF core to off state (paranoia setting)
msgVrfCfgTxInpScReq: Set input scaling according to the TX WLAN core DAC output
msgVrfCfgChGainReq: Set the channel gain to -100dB initially
msgVrfCfgRxGainTblReq: Set an arbitrary gain table to emulate the RF gain control feature
msgVrfOnOffReq: Switch VRF core to on state

The VRF core now behaves like a real RF with no input at the antenna (due to the -100dB channel gain). It
produces white gaussian noise at its output adc depending on the gainSel input signal. This signal selects a
virtual "RF gain" from the internal table (defined earlier by msgVrfCfgRxGainTbiReq).

Finally, the 802.11a WLAN cores are reset and configured. Script setupVr.m uses msgVrfCfgGpoReq.m to
reset the cores via the general purpose outputs (GPOs). After reset the cores are booted and configured via
subfunctions setupWlan.m and setupWlanAgc.m (not discussed in detail here).

For each core, message LedBlinkReq is called directly after booting to indicate the activity.

>> setupVrf

Reset + boot VRF system ...

Booting VRF OK

Version A.B.C

Set RF off

Set input scaling

Set channel gain to -100 dB initially
Set RF gain delay and RF gain step table
Set RF on

© Ingenieurbliro BAY9, Dresden, Germany 15

Version 10.04.01

Boot WLAN

Booting WLAN OK

Version X.Y.Z

Set band selection

Set TX timing

Set TX backoff

Set RX time tracking parameters

Set normal ACQ threshold + normal (automatic) AGC mode
Set CCA to 5500us (max length), 0 dB offset

Boot WLAN

Booting WLAN OK

Version X.Y.Z

Set band selection

Set TX timing

Set TX backoff

Set RX time tracking parameters

Set normal ACQ threshold + normal (automatic) AGC mode
Set CCA to 5500us (max length), 0 dB offset

Set RX AGC gain table for calibration
Set low ACQ threshold
Send RX request messages 10x + evaluate input level

Set attnIdx -> 0
Input amplitude (mean) = 25.7

Set attnIdx -> 1
Input amplitude (mean) = 18.2

Set attnldx -> 2
Input amplitude (mean) = 12.9

Attenuation used: Index = 1, MeanAmp = 18.2
Set RX AGC gain table again after calibration

Set normal ACQ threshold + normal (automatic) AGC mode

2.4.3 Data transmission

Function testTxRx11g.m initiates transmission of 802.11a OFDM frames and checks correct reception via the
VREF core’s PHY control features. For each transmitted frame it uses

msgVrfCfgChGainReq: Set the VRF gain to yield the desired carrier-to-noise ratio
msgVrfDatBufRxStartReq: Prepare VRF RX buffer to receive data from RX PHY core
msgVrfDatBufTxFillReq: Fill VRF TX buffer with data to send to TX PHY core
msgVrfDatBufTxStartReq: Enable VRF TX buffer data transmission
msgWlanRxRunft: Start WLAN RX PHY core acquisition

16 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01 2>
msgWlanTxRun: Start WLAN TX PHY core OFDM frame transmission
msgWlanRxRun2: Read reception results of the OFDM frame from the RX PHY core

msgVrfDatBufRxCheckReq: Check VRF RX buffer data

Additionally, function testTxRx11g.m prints an evaluation line for each frame transmitted and finally statistics
about the reception results. In the example below 10 frames of mode 7 (64-QAM, R=3/4), length 1000 bytes,
C/N = 19dB are transmitted:

>> testTxRx1llg (10, 7, 1000, 19, 1);

f————— - t————- t———f———- +———- +-——- t——— +-——+
\ No | C2N | M| Len | Amp | AGC | fOffHz | C |
tommm t———m et e - - o +-——+
| 0 [19.0 | 7 | 1000 | 147 | 0 | =305 | 1
\ 1] 19.0 | 7 | 1000 | 104 | 3 | =153 | 1
\ 2 1 19.0 | 7 | 1000 | 101 | 3 +2060 | 1
\ 31 19.0 | 7] 1000 | 103 | 3 +229 | 0
| 4 1 19.0 | 7 | 1000 | 102 | 3 -1144 | 0
| 51 19.0 | 7 | 1000 | 105 | 3 =229 |1
\ 6 1 19.0 | 7 | 1000 | 148 | 0 | +76 | 0
\ 71 19.0 | 7] 1000 | 102 | 3 +1144 | 0
\ 8 | 19.0 | 7 | 1000 | 101 | 3 | -610 | O
| 9 | 19.0 | 7 | 1000 | 103 | 3 +153 | 0

CRC OK: 60.0%
CRC Err: 40.0%
Hdr Err: 0.0%
No Acq: 0.0%

© Ingenieurbliro BAY9, Dresden, Germany 17

Version 10.04.01

3 Description — General aspects

3.1 Reset
3.1.1 Overview

The VRF core can be reset by a HW signal or a SW message. In addition, an internal self reset feature is
provided that normally puts the core into reset state directly after loading the FPGA.

3.1.2 Hardware reset

HW reset is provided via signal resetin in figure 1 and is active high. Note that in example setup vrfXin figure 2
the signal resetExtis inverted (thus active low) to be compliant with typical board setups.

It is necessary to wait 128 cycles after HW reset before booting the core, because the internal reset signal is
delayed and kept active during that time. Alternatively, signal resetOut (cf. figure 1) can be monitored, resetOut
= 1 indicates that the internal reset is still active.

3.1.3 Software reset

SW reset is triggered by a ResetReq message sent via the control interface, cf. section 3.3.2 and section 6.3.2.
SW reset normally only works when the core is ready to receive and evaluate messages, i.e., in normal operation
mode after booting. If the systems hangs for some reason, e.g. misconfiguration or similar, then the SW reset
might not work.

If an additional ResetReq is sent while the core is still in boot mode, i.e., directly after a previous SW or HW
reset or loading of the FPGA, then it is captured by the IP core control interface. Because the core cannot handle
messages before being booted/started, detection of the reset is timer based in this case.

In boot mode, the core normally expects packets of 2 data words via the control interface for booting and con-
figuration. A ResetReq is only a single data word. Therefore, if the second data word is missing, a watchdog
triggers reset internally about 222 clock cycles after the ResetReq (or any single word) has been received. One
needs to wait at least 222 cycles or 0.05ms @ 80MHz after using a SW reset, or monitor signal resetOut for
activity.

3.1.4 Internal self reset

Directly after loading the FPGA, the VRF core tries to reset itself. This feature is based on an internal 8-bit
counter whose initial state is assumed to be random or all Os or all 1s directly after loading. This feature might
be unreliable on some FPGAs.

3.1.5 Boot confirm message

The SW reset request has no corresponding confirm. Instead, a BootCfm message (section 6.3.29) is sent from
the VRF core to the host independent of the type of reset. This confirm is sent only after booting and starting the
core, not directly after reset.

18 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

3.2 Booting
3.2.1 Using the boot file

After reset, the system is in boot mode. The contents of the boot data file ./dat/boot.bin needs to be transferred
via the control interface (see section 3.3 below). Transferring this file initializes the internal controller memories
and starts the controller. File boot.bin is also provided as boot.hex. Successful boot is indicated by

e a 01010101 pattern at the LED outputs

e a BootCfm message sent from the IP core to the host via the control interface, cf. section 6.3.29

The BootCfm message must be read by the host. After booting, the system is in operation mode. Rebooting is
only possible after another reset.

Section 2.4.1 provides an example how to boot via UART using Octave/Matlab function msgVrfBootReq.m.
Despite its name, this function is not really a request message. Instead, it transfers the boot data to the IP core
and reads the BootCfm.

Another option is to transfer boot.bin via the command line, e.g., cat boot.bin > /dev/ttyUSBO0. See also section
3.3.3 for proper UART init in the latter case.

3.2.2 Using the memory init files

Alternatively to section 3.2.1, the memory contents files X716_NNN_(P/D)ram.hex can be used if the con-
troller memory is replaced with preinitialized FPGA block memory. In this case, only the 2 words given in file
X16StartCmd.hex need to be transferred via the control interface to start the IP core operation.

3.3 Control interface
3.3.1 Interface selection

Control interface selection is made via the ctr/Sel input. Setting ctr/Sel = 0 selects the ctrl lines, while ctriSel = 1
selects the UART. Both interfaces are functionally equivalent. All control data comes in words of 16 bits.

3.3.2 Ctrl

The ctrl interface is a generic interface with 16 parallel data lines each for input and output (ctrlin, ctrlOut), and
the corresponding handshake signals described in section 3.5. It is much faster than the UART and can either
be used directly, or adapted to other interface types like SPI etc.

3.3.3 UART

The uartin and uartOut signals are used to receive and transmit UART data in 8N1 mode (8 bit, no parity, 1 stop
bit). There is no handshaking. Internal processing of the core is sufficiently fast to receive data from uartin, the
uartOut line must be handled accordingly by the host. In order to handle the 16 bit control data, the UART uses
little-endian format (low byte first).

The default UART speed is 2Mbaud for 80 MHz clock frequency. Configuration of parameter VrfUartDivider C in
file ./src/common/instances/def_Const _vrf.v allows to change the speed. It must be set to

VrfUartDivider_C = round(fuk/ foaua) — 1 (D

Function ./tst/m/uartinit. m contains the default settings for the UART device file and the UART speed. It also
contains the proper settings to use the UART via the Linux or Windows/Cygwin device file interface (/dev/ttySO0,
/dev/ttyUSBO or similar). Please edit this function to adjust the UART device file and speed.

© Ingenieurbliro BAY9, Dresden, Germany 19

Version 10.04.01

3.3.4 Message handling + forwarding

Messages from the UART or ctrl interface can be forwarded to connected physical layer IP cores via inputs /
outputs ctrlPhy(0/1)(In|Out), cf. figure 1. The exact mechanism of message forwarding is described in section
6.1 and section 6.2.

3.4 Control messages and configuration

— REG
T 52 2 | o [mem
280 S E 3 HW
= g - 23 = Module 1
=0p = £
REG
MCeOsgt;(g)jle y Ctrl IF |FW Control| [[l [MEM| HW
Handler (CtrI/UART) HEeERgE Module 2
Host FPGA | IP core

Message control

Fig. 4: Configuration via control messages

Setup of IP core features involve 3 stages, the control message handlers, the firmware control messages, and the
actual signal processing module(s) implemented in Verilog, also called HW module(s) throughout this document,
see also figure 4. Details on messages can be found in section 6.

e Verilog modules (IP core hardware modules):

One or several Verilog modules implement the actual signal processing operation on the FPGA. Such a
module could be an FIR filter, or a CORDIC. HW modules are configured via registers. The configuration
of these HW modules is not done by the user directly. Instead, control messages provide an abstract way
to access the functionality.

Control messages (IP core firmware functions):

The firmware based control messages are the interface the VRF IP core provides for host access. A
control message configures HW module registers and possibly memory. Typically, HW module registers
are set directly from the message parameters with little or no calculation being carried out on the internal
message controller. Each control message request has a corresponding confirm. Control messages are
listed in section 6.3.

Control message handlers (Octave/Matlab or other host software functions):

On the host side, Octave/Matlab example implementations of message handler functions are used to
send data to / read data from the VRF IP core. The functions either pass parameters directly, or perform
additional calculation using more abstract inputs. E.g., a clock offset might be passed in ppm to the
message handler, the message handler then calculates the necessary fixed point parameters needed
to configure the HW. The messages control handler functions distributed with the IP core do not need
to be used. The user is free to replace or extend them according to his requirements. Control message
handlers are found in directory ./msg.

20

© Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01 =

Combined functions

In addition, some setup example functions are provided that combine several control message handler calls.
E.g., to emulate coupled baseband and RF clock, setupVrfClkFreqOff.m combines setting of frequency and
clock offset. Similarly, function setupVrfPa.m uses a predefined example curve to calculate the LUT for power
amplifier emulation based on a few simple parameters. These functions can be found in directory ./tst/m/test.

3.5 Interfaces and handshake signals
3.5.1 Overview

The IP core has several data and control interfaces such as ctrlin/Out, dacRe/Im, adcRe/Im, etc... An interface
xyz typically comes with corresponding xyz ir (input ready) and xyz or (output ready) signals. Data transfer
occurs at the positive clock edge following the handshake signals, cf. figure 5.

3.5.2 Inputs

For inputs (xyzln), the input ready signal xyziIn_iris an output indicating to the connecting module that the input
xyzIn is ready to accept data. The output ready signal xyzIn_oris an input controlled by the connecting module
to indicate that data is available.

Data is transferred if xyzIn_ir=1 and xyzIn_or=1 simultaneously. If signal xyz/n_oris not available, the connecting
module must supply data each time xyzIn_ir=1. If signal xyz/n_iris not available, the input will accept data at any
time with data transfer occuring if xyzIn_or=1 is set by the connecting module.

3.5.3 Outputs

For outputs (xyzOut), the output ready signal xyzOut _or is an output indicating to the connecting module that
the output xyzOut has data available. The input ready signal xyzOut ir is an input controlled by the connecting
module to indicate that data can be accepted.

Data is transferred if xyzOut _ir=1 and xyzOut_or=1 simultaneously. If signal xyzOut _ir is not available, the con-
necting module must accept data each time xyzOut _or=1. If signal xyzOut_or is not available, the output will
provide data at any time with data transfer occuring if xyzOut ir=1 is set by the connecting module.

o UL I

Xyz

Xyz_ir j

Xyz_or ’7 r
Data transfer enable ’7

Actual data transfer | i

Fig. 5: Data transfer

© Ingenieurbliro BAY9, Dresden, Germany 21

Version 10.04.01

3.5.4 Summary

In order to connect an IP core input (xyz/n) with a corresponding output (xyzOut) of a connecting external module
assumed to have the same type of interface (or v.v.), connection must be made as

e assign xyzin = xyzOut
e assign xyzIn_or = xyzOut _or
e assign xyzOut _ir = xyzIn_ir

Data transfer signaling is depicted in figure 5. Full handshaking does not always make sense, e.g. it is provided
for ctrlin/Out, but in some other cases, one of the signals is omitted.

3.5.5 Partial use of handshaking lines

Full handshaking does not always make sense. It is provided only for ctrlin/Out. In other cases, one of the
signals is omitted. E.g., for the DAC input, there is only handshake signal dac_ir available. Simulating a real DAC
at a certain clock rate, it cannot wait for the connecting TX-PHY core, but needs data at certain clock cycles.
Similarly, the ADC output provides data at some clock cycles like a real ADC and cannot wait for the RX-PHY
core to accept them. Therefore, adc _or is the only handshake signal there.

22 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

4 RF emulation

4.1 Overview
4.1.1 Summary
RF emulation is depicted in the lower part of figure 1, details are shown in figure 6, figure 7, and figure 8. The

emulation consists of 3 major components, RF-TX, RF channel, and RF-RX, which are explained in more detalil
below.

412 TX
Processing
clk g ‘ RMS = 3276.8 = -20dB (fs) ‘
tXf dcoff

/ Q

. > »(+ > > —_1—

12 bit 12 bit 16 bit 16 bit
DAC Input DC IQ :
Simul. Scaling Offset Imbalance Power Amplifier
TX

Fig. 6: TX overview

An overview over TX is shown in figure 6. The DAC input accepts 12 bit complex valued data. In order to simulate
DAC rates that are lower than the processing clock frequency, DAC simulation requests data only during p out
of g clock cycles.

Input scaling adapts data to the default internal level of -20dB full scale with respect to 16 bit internal processing.
DC offset and 1Q imbalance can be added subsequently.

Finally, a power amplifier with arbitrary definition of the compression curve depending on the input power com-
pletes the TX model.

4.1.3 Channel

@iZPikT
L(%) » < L
. L L L
£l _Jm—‘ 16 bit {>_ 32 bit

Freq. Channel
Multipath offset Clk offset Gain
Channel

Fig. 7: Channel overview

Channel modeling is depicted in figure 7. Multipath fading is accomplished by an FIR filter with up to 10 coeffi-
cients. The coefficients can be defined arbitrarily with respect to amplitude and time delay.

© Ingenieurbliro BAY9, Dresden, Germany 23

Version 10.04.01

Frequency offset is added by rotation of the signal in the time domain, and clock offset can be set in the range
[—1000 ... + 1000] ppm using filtering on a subsampling basis.

Finally, the channel gain multiplies the signal by an arbitrary factor while at the same time increasing the bit width
from 16 to 32 bit, thereby modeling the wide dynamic range of the signal on the air.

41.4 RX
gainSel
A 4
L nl I IO
Q >>4
> > > M >
32 bit = g 16 bit v 16 bit | Sat | 12 it
RX Gain DC IQ !
AWGN Control Offset Imbalance
RX

Fig. 8: RX overview

RX modeling is shown in figure 8. First, white gaussian noise (WGN) with constant signal power is added to the
RX input. Since this input has 32 bit, SNR modeling is possible over a wide range by selecting a proper factor
for the channel gain.

RX gain control features a 7 bit gainSel signal that must be driven by the users RX AGC. Signal gainSel serves
as index to a LUT, which contains gain settings that can be defined arbitrarily by the user. Typically, one will
select gain settings similar to the ones of the real RF that is connected later. Gain settings can be delayed by a
fixed number of samples to model possible delays in the real RF-RX path.

DC offset and 1Q imbalance modeling is provided the same way as for TX. Finally, the signal is shifted right
(>> 4) and saturated to 12 bit before being passed to the ADC output of the VRF core.

4.2 VRF on/off

The complete VRF chain can be enabled / disabled with message OnOffReq. Whenever the VRF configuration
is changed, the VRF should be switched off before, and switched on after the config changes have been made.
See section 6.3.3 for details.

4.3 TX-DAC
4.3.1 Functional description

The VRF IP core can process 1 sample in each clock cycle. If the processing clock frequency (parameter g) is
higher than the baseband PHY sample rate (=ADC/DAC rate, parameter p) of the real system, DAC simulation
provides the means to emulate a DAC running at sample rate p, i.e. requesting data from the TX PHY only in p
out of g clock cycles.

Assume an LTE system with the PHY signal processing operating at 100 MHz, while the BB sampling rate is only
30.72MS/s. A real DAC connected to the TX part of the system would request p = 30.72 - 10° samples each
g = 100-10° clock cycles.

Different from all other modules, TX DAC emulation has no signal processing capabilities. Instead, it only slows
down input sample reading and subsequent processing. Thereby, it allows indirect validation of the TX-PHY core
implementation in terms of providing data at the rate requested by the DAC. Likewise, the same applies on the
RX side for data supplied by the ADC.

24 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

4.3.2 HW operation

Both parameters p and g are 32-bit, hence p,q = [1 .23 1], with p < ¢. For the example above, p = 30720000
and g = 100000000 could be set, or equally p = 192, g = 625. Signal adc _ir (ADC input ready) is "1" whenever
data is requested from the TX PHY during processing. The request pattern is as regular as possible, i.e., because
100000000/30720000 = 3.2552, adc_ir = "1" will occur every 3rd or 4th clock cycle, with a repeating pattern
each 625 clock cycles.

4.3.3 FW control message

Message CfgDacRateReq takes the 4 16-bit parameters pLo16, pHil6, gLo16, and gHi16 and writes them to
the corresponding configuration registers. See section 6.3.15 for details on the message.

4.3.4 Host control message handler

Function msgVrfCfgDacRateReq.m uses 32-bit values p and g as inputs, splits them into upper and lower 16 bit
parts, and calls message CfgDacRateReq.

4.4 TX- Input scaling
4.4.1 Functional description

Most of the VRF signal processing operates at 16 bit internally. For correct operation, the signal level must be at
exactly —20dB with respect to the full scale internal representation. i.e.,

E([Y|?) =2"-1072/20 = 3276.8 2)

where samples y are the 16 bit complex valued outputs after TX input data scaling. This must hold independent
of the VRF input (= TX PHY output) signal level. Therefore, the input must be scaled such that the required VRF
internal signal level is achieved.

4.4.2 HW operation

RMS(y) = 3276.8

Input Scaling

Fig. 9: TX input scaling
Given the 12 bit complex valued input samples x of the VRF, the output samples y are calculated as
y=x-2%1xp/2"% = x-1x,/28 . 3)

The factor 2* results from the MSB aligned mapping of 12 bit signal x to 16 bit, which are then internally multiplied
by txy and finally shifted right >> 12, see figure 9.

© Ingenieurbliro BAY9, Dresden, Germany 25

Version 10.04.01

Factor 7xy can assume values from [1..32767]. It is calculated as

3276.8-28
E(|X|?)

Ixy=

or equally

txp = 212 . 10(IBO~20)/20
when IBO is the VRF input backoff in dB of the 12 bit TX PHY output data x defined as
IBO = —20-log,,(1/E(|X|?)/2'") .

The range of 7xy is [1..32767], therefore, the maximum /BO is about 38dB.

4.4.3 FW control message

“4)

&)

(6)

Message CfgTxInpScReq writes the scaling parameter zx; to the TX scaling configuration register. See also

section 6.3.19 for details on message CfgTxInpScReq.

4.4.4 Host control message handler

Function msgVrfTxInpScReq.m takes the input backoff (in dB) as parameter and calculates the scaling factor

according to (5) before calling message CfgTxInpScReq.

4.5 TX -DC offset

4.5.1 Functional description

TX DC offset adds a constant value to the TX signal. As the RMS of the complex valued signal is 3276.8 after
TX scaling (see section 4.4), the DC offset must be seen relative to this.

4.5.2 HW operation

dc

Off

16 bit + 17 bit sat

16 bit

DC Offset

Fig. 10: TX DC offset

DC offset emulation allows arbitrary constant 16-bit signed values to be added to the signal. Final saturation is

applied, see also figure 10.

4.5.3 FW control message

Message CfgTxDcOffReq writes the offset parameters for real and imaginary part to the VRF core. See also

section 6.3.20 for details on message CfgTxDcOffReq.

26

© Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01 =

4.5.4 Host control message handler

Function msgVrfTxDcOffReq.m uses integer DC offset values as parameters and transfers them as provided by
calling message CfgTxDcOffReq for configuration.

4.6 TX-I1Q imbalance
4.6.1 Functional description

TX 1Q imbalance is modeled by assuming the imaginary part of the signal being distorted in terms of phase o
and amplitude factor ar, while the real part of signal remains unaffected. Additionally, normalization scaling by
factor kr shall be applied such that the power of the output signal is kept. The resulting output is

y=kr - (Xge +] - are!™ xp) (7)
with kr = /2/(1 +a).

4.6.2 HW operation

XRe yRe

16 bit 16 bit
ylm

b
=—»

IQ Imbalance

xIm

Fig. 11: TX IQ imbalance

The implementation of the TX 1Q imbalance is depicted in figure 11. Factors a, b, and ¢ can be configured via
registers. Real and imaginary part of output y can be written as

YRe _ a ¢ XRe
)= (a)(3) -

Comparing (7) and (8), factors a, b, and ¢ can be calculated as

a= kg)
b= kF ~df - COS(OC) (10)
C:kp-ap-sin(—OC) (11)

Factors a, b, and c are internally represented by 16 bit in Q14 format, thereby providing sufficient resolution for
any possible combination ap = [0..c0] and o = [—180°..180°]. Default values are a =1, b=1, ¢ =0 (no 1Q
imbalance).

4.6.3 FW control message

Message CfgTxlqimbReq writes parameters ays., = a-2'4, by, = b-2'4, and ¢y, = c-2'* to the configuration
registers. See also section 6.3.21 for details on message CfgTxIqimbReq.

© Ingenieurbliro BAY9, Dresden, Germany 27

Version 10.04.01

4.6.4 Host control message handler

Function msgVrfTxlqgimbReq.m takes phase a. = [—180..180] in degree and the amplitude factor ap = [0..o0]
as input, calculates a, b, and ¢ according to (9)-(11), scales by 2'4, and calls message CfgTxlqgimbReq for
configuration.

4.7 TX - Power amplifier
4.7.1 Functional description

The TX power amplifier is modeled as memoryless phase and amplitude distortion depending on the magnitude
of the complex input values

y = a(|x])e/* . x (12)

Both, amplitude factor a and phase shift ¢ can be defined arbitrarily via lookup tables (LUTSs).

4.7.2 HW operation

Power amplifier emulation involves several Cordic functions, multipliers, and LUTs followed by linear interpola-
tion. Figure 12 gives an overview.

ph lin
LUT] Int

abs :

cova o BRI !

x phase y
16 bit e Shift 16 bit
(cordic)
Power Amplifier

Fig. 12: Power amplifier

The magnitude of the complex input values x is calculated and fed into 2 different LUTs, one for the phase shift,
one for the amplitude factor. The LUTs have 513 entries a; for the amplitude factor and @ for the phase shift,
with k = 0..512 corresponding to input magnitude values |x| = 0,64,128,...,32768.

Amplitude factor values are 15 bit, i.e Q15 unsigned, fixed point range a ., = [0..32767] corresponding to factors
a = [0..0.99997]. Fixed point phase shift values range from @, = [-32768.. 4+ 32767] corresponding to phase
shifts (in degree) of @ = [—180.. + 180].

The PA modeling can be bypassed completely. If not bypassed, a fixed vs. float accuracy of about 60dB is
achieved.

4.7.3 FW control message

Message CfgTxPaLutReq reads values a; (-2') and ¢ (-2'¢/360) in an interleaved fashion for k = 0..512, i.e.,
ao, 9o, ar,P1,...,as12,Ps12. The power amplifier module keeps absolute values ag, @k, and differential values,
ag+1 — ak, Pr+1 — Qk. Calculation of the differential values is done in the FW. See also section 6.3.23 for details
on message CfgTxPalutReq.

Message CfgTxPaReq allows to switch between normal PA modeling operation and bypass mode. See also
section 6.3.22 for details on message CfgTxPaReq.

28 © Ingenieurblro BAY9, Dresden, Germany

Version 10.04.01

Amplitude compression
. T T T T

Qutput power [dB]

-30

Transfer curve
— — PA limit

i i i i
-30 -20 -10 0 10 20
Input pawer [dB]

Fig. 13: PA amplitude modeling example

4.7.4 Host control message handler

Function msgVrfTxPaLutReq.m takes 2 vectors with 513 entries each, a; € [0..0.99997], ¢, € [—180..180],
scales and reorders them as described in section 4.7.3, and calls message CfgTxPalLutReq to configure the
PA-LUTs.

Function msgVrfTxPaReq.m calls message CfgTxPaReq with the bypass parameter (0 or 1).

4.7.5 Example setup function

An example function is given in function setupVrfPa.m. Note that this is just an example and does not refer to
any real world RF-PA model. Instead it only illustrates the setup of the PA modeling. The user is free to configure
the LUTs according to his own PA model.

Amplitude compression
For amplitude compression, a tangens hyperbolicus has been selected to model the behaviour. Assuming ays

being the parameter for the maximum amplitude,

[y| = aptanh(|x|/ap) (13)

defines a suitable behaviour. While |y| = |x| holds for small values of |x|, the maximum output of |y| converges to
ay for large |x|. E.g., if a PA backoff of 6dB shall be modeled, ay = 3276.8 - 10920 = 6538 should be selected,
as \/(E(|x|*) = 3276.8, cf. section 4.4. Figure 13 illustrates the related transfer function between input and
output amplitude of the PA. The input amplitude of 0dB refers to the value 3276.8.

Amplitude factors are finally calculated as

ar = |ykl/ x| = a tanh (x| /ar) / 1] (14)

with x; = [0,64, 128, ...,32704,32768] for k = 0..512.

Because the RMS of the VRF internal signal level is 20dB below full scale, arbitrary PA backoffs between
0..20dB can be modeled.

Phase distortion

© Ingenieurbliro BAY9, Dresden, Germany 29

Version 10.04.01

Phase deviation
20

LT TR E R T LT T T PP -

e <

Output phase offset [deg]
wn
!
i

[Transfer curve
-10 L
-30 -20

-10 10 20
Input power [dB]

Fig. 14: PA phase distortion modeling example

Similarly, some arbitrarily defined phase shift ¢ is calculated in function setupVrfPa.m, see figure 14. The
phase offset increases linearly up to a maximum value for input levels > —20dB. Depending on x;p =
201og((|x|/3276.8) and a maximum phase @), the phase distortion can be expressed as

(15)

0 for x;p < —20
Op - (xq8 +20) /40 for xyp > —20

4.8 Channel - Multipath
4.8.1 Functional description

Multipath channel emulation uses a flexible FIR filter with up to 10 different paths. Each path can be assigned a
delay between 0..29 samples. In detail, the output is calculated as

9
Yk = Z ClXk—d, (16)
=0

where x;_4, are the input values delayed by d; € [0..29] samples, and ¢; are the corresponding complex valued
coefficients.

4.8.2 HW operation

The HW operation is shown in figure 15. Complex valued coefficients must have a magnitude |c| < 2. The mux-
Add units (ma0 .. ma29) include bit extension and subsequent saturation to 16 bit to prevent possible overflow.
Each multiplexor can select one path x - ¢; arbitrarily, or use 0 at its input. Coefficients are handled internally in
Q13 format.

4.8.3 FW control message

Message CfgMultiPathReq first resets all coefficients ¢ to 0 and also all multiplexors to the zero input. It then
reads the number of coefficients n. = [1..10], and afterwards n, triples (cge, ¢im, d), where cge, cj,, are real/imag
part of the coefficients in Q13 format, and d is the corresponding delay in samples. As all complex coefficients
must have |c| < 2, the fixed point amplitude of the corresponding Q13 values is limited to |c|-2!3 < 214,

30 © Ingenieurblro BAY9, Dresden, Germany

Version 10.04.01

16 bit

c0 cl c9

o W Lo ° 1 Lo

0 ma29 ma28 ma0 y
@—p@e—-b - —»li T

Multipath

Fig. 15: Multipath operation

Coefficients are converted internally to value triples (cge, Cge + Cim, Cre — C1m) before being written to the con-
figuration registers. Multiplexors are set according to the corresponding delay.

Note that different from most other messages, this message has a variable number of coefficients, thus a variable
number of parameters. See also section 6.3.16 for details on message CfgMultiPathReq.

4.8.4 Host control message handler

Function msgVrfCfgMultiPathReq.m needs the complex valued input vector ¢ and integer vector d as input
parameters. Data is checked for integrity, ., = ¢+ 213 is calculated, and the vectors are resorted into the triples.
Finally, [n¢, co.re,fxp» €0, im, fxps 40, C1Re, fxp> ...dn,_1] is sent to the IP core by message CfgMultiPathReq.

4.9 Channel - Frequency offset
4.9.1 Functional description
Functionality of frequency offset emulation can be described as
Y = xpe 2 17

where k is the sample index, f, = f,/fs is the relative frequency offset with respect to the baseband sample
frequency f, and f, = f.(rx) — fe(rx) is the difference between RX and TX carrier frequency. By definition,
frequency offset f, is positive for fo(rx) > fe(rx)-

4.9.2 HW operation

The frequency offset emulation module shown in figure 16 consists of a phase accumulator with an 48 bit input
for £, and a subsequent Cordic. The range f, = [—0.5.. +0.5] is mapped to f. pp = [-2¥..+2Y — 1], i.e., f;
is a Q47 fixed point value. The Cordic includes scaling such that the signal amplitude is not changed.

4.9.3 FW control message

Due to the 16 bit nature of the control interface, message CfgFreqOffReq takes 3 16-bit inputs f. sy, =
[fr: fp i | fr.pxp.mi | fr.pxp.L0] @nd writes them to configuration registers without changes. See also section 6.3.17
for details on message CfgFreqOffReq.

© Ingenieurbliro BAY9, Dresden, Germany 31

Version 10.04.01

v | | phase
bt [7] accu

A

. phase y
16 bit | Shift 16 bit
(cordic)
Frequency Offset

Fig. 16: Frequency offset modeling

4.9.4 Host control message handler

Function msgVrfCfgFreqOffReg.m needs the clock offset in PPM (clkO f f Ppm), the carrier frequency (fc), and
the sampling frequency (fs) as parameters to calculate the relative frequency offset
fr = clkOffPpm/10°- fc/ fs (18)

Fixed point conversion calculates f;. rp = f;- 248 selects the upper, middle, and lower 16 bit, and configures the
IP core using message CfgFreqOffReq.

Note that the definition of the clock offset in function msgVrfCfgFreqOffReg.m is consistent with the clock offset
definition in msgVrfCfgCIkOffReg.m if baseband clock and carrier frequency are derived from the same clock
source, cf. section 4.10.4.

4.10 Channel - Clock offset
4.10.1 Functional description

Clock offset emulation is realized by passing the signal through an FIR filter while shifting the filter coefficients
in the time domain.

Filter transfer function

Hif)

Fig. 17: Clock offset filter function

The filter transfer function is depicted in figure 17. Choosing H(f) = 1 for frequencies f = [—0.375.. + 0.375]
(normalized to the sample frequency), with cos-roll-off to the band edges yields a good compromise of a relatively
wide passband in combination with a time domain impulse response of a limited length.

32 © Ingenieurblro BAY9, Dresden, Germany

Version 10.04.01 =

Let o = h((k+ A)T;) be the sampled version of the analog filter impulse response /() sampled at time
(k+A)T;, with A = [—0.5..40.5], and yxa = J((k + A)T;) the corresponding sampled outputs y obtained by
filtering input x by A, then the output can be described as

YA = le “hi_ga- (19)
7

Shifting the output by a fraction of a sample is achieved by selecting proper filter coefficients /; . Clock offset
is emulated by continuously updating A, i.e. changing the coefficients based on a value ¢, that represents the
relative offset of the oscillators,

A=—-N-c, (20)

where N is the number of samples passed since the simulation started. For practical purposes, A € [—0.5..+0.5]
by definition with additional sample slip occuring upon overflow, see description of the HW operation below.

The disadvantage of the limited length of the impulse response is that only about 75% of the available band
width can be used when clock offset emulation is active, even when the actual offset is set to zero. Furthermore,
due to limited filter length, resolution, and update rate, the output signal accuracy of the block (compared to a
perfect floating point implementation) is limited to about 50dB. This value is strongly depending on the simulated
clock offset, see table 1 for details. Using a clock offset > 1000 ppm is not recommended.

Clock offset in ppm 50 | 100 | 200 | 500 | 1000
Signal accuracy in [dB] || 50 | 49 | 47 | 42 36

Thl. 1: Clock offset signal accuracy (approximate)

If the feature is not needed, clock offset emulation can be bypassed completely, thereby avoiding the limitation
of signal accuracy and the bandwidth restriction.

4.10.2 HW operation

The HW implementation consist of 2 submodules firToff and coeffToff, see figure 18.

Submodule firToff represents an FIR filter with variable coefficients. In each processing step, a new set of coef-
ficients is loaded and 32 output samples are created. Input data is normally shifted by 32 samples during that
time. Depending on the input control signal, one sample can be either skipped (extra input data shift) or used
a second time (skip input data shift) before the operation starts. This compensates for possible coefficient time
jump of g A from A= —0.5 — +0.5 or v.v.

c
» coeffToff
inp. ctrl filter coeff.
vy v
X N . y
16bit]) firToft 16 bit |
inp. FIFO
Clock Offset

Fig. 18: Time/clock offset module

© Ingenieurbliro BAY9, Dresden, Germany 33

Version 10.04.01

Because clock offset emulation operates in blocks of 32 samples, it needs c,3, = 32 - ¢, as parameter to update
the FIR filter coefficients. This update rate is assumed to be sufficient since typical clock offsets are < 100ppm.
The internal control uses a 48 bit (Q47) representation for c,3, i.€., Co32,fxp = 32 € - 2.

If ¢, > 0, the RX sample frequency is lower than the TX sample frequency and the module produces less output
samples than input samples, i.e. the output is halted from time to time while the input skips 1 sample during
processing.
If ¢, < 0, the RX sample frequency is higher than the TX sample frequency, the module produces more output
samples than input samples. Therefore some samples are used twice and the input is blocked for 1 cycle from
time to time.

Although there is a small FIFO buffer at the input, in the long run ¢, < 0 can only work if the following relation
holds for the DAC rate p/q (cf. section 4.3)

pla<1/(1—-c,). 21

If p =g, i.e. if the DAC sample rate is the same as the signal processing clock, it is not possible to use ¢, < 0.
There is no such restriction for ¢, > 0.

In bypass mode, module firToff still processes normally, but is virtually inactive as coeffToff passes a single tap
with value "1" as coefficient. Sample slip is avoided by ignoring clock offset values.

4.10.3 FW control message

Because of the 16 bit nature of the control interface, control message CfgCIkOffReq needs c,32 fxp =
[co32, fxpHI|Co32, fxpmi|Co32, fxpro) for the clock offset, and writes these 3 parameters plus the bypass parame-
ter to submodule coeffToff without changes. See also section 6.3.18 for details on message CfgClkOffReq.

4.10.4 Host control message handler

Function msgVrfCfgClkOffReq.m takes a relative offset given in ppm |clkOf fPpm| < 1000 and a bypass selec-
tor (0 or 1) as parameters. In order to be consistent with the definition of frequency offset in section 4.9.1, i.e.,
a positive offset corresponding to a higher clock/sampling frequency at the receiver, ¢,32,rx, Mmust be calculated
as

1
= —1)-32.2%8. 22
Co32fap (1+ clkOf fPpm/105 > @2)

Equation (22) turns a positive clkOffPpm into a negative time step c,32 xp. The 48-bit value c,32 1y is split
into 3 16-bit values c,32, fxpH1, Co32,fxpmi, Co32,fxprLo and configures the VRF core via message CfgCIkOffReq.

4.10.5 Example setup function

Function setupVrfClkFreqOffset.m gives an example how to setup a system with clock and carrier frequency
coupled, i.e., derived from the same clock source. Possible violations of the DAC sampling rate in conjunction
with positive clock offsets are checked within this function.

4.11 Channel - Gain
4.11.1 Functional description

Gain control converts the 16-bit internal data into 32 bit, thereby simulating the arbitrary dynamic range of the
signal on the air. The output is calculated as

y=x-g5-2% (23)

34 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

where g = 0.5..1 is the gain factor, and g, = —32.. 4 18 is a gain shift. The output y is saturated to 32 bit after
the operation.

4.11.2 HW operation

.............. e
128..255 g = -32..+18 ;
x_1.] sign sign - R
16 bit Ext Ext [50 o | <9 |5o o | sat I_ 2 b0
gain :

Channel Gain

Fig. 19: Channel gain

Figure figure 19 depicts the HW operation. The 16-bit signal is first sign extended to 32 bit and then passed
through the gain module. This module provides multiplication by g7 s, = g7 -256 = 128..255 and subse-
quent shift by << (g; — 8) without internal overflow. The signal is finally saturated to 32 bit again. Because
20log;((129/128) = 0.067, the accuracy of the gain setting is better than 0.1dB.

4.11.3 FW control message

Message CfgChGainReq uses gain factor gy r,, and gain shift g; to set the corresponding HW registers. See
also section 6.3.24 for details on message CfgChGainReq.

4.11.4 Host control message handler

Function msgVrfChGainReq.m uses the time domain SNR value as input in order to calculate the appropriate
channel gain. It assumes the default signal RMS 6, = 3276.8 (see section section 4.4) and the corresponding
white gaussian noise with 6,, = 796 (see section section 4.12). The necessary factor to achieve a certain SNR
is given by

f — 105’1)‘/20 . (Gn/cx) (24)
From f, the corresponding values gy, 7y, and g are calculated as

8s = [logy(f)] (25)
g7 fxp = round(256 - 2'°22(/)=8s) (26)
f.fxp

with possible correction if g rx, = 256 in (26)
(gf,fxpags) = (256”1) — (1287n+ 1) (27)

Finally, g/ rxp and g are written to the VRF IP core via FW message CfgChGainReq. Given the range of gy, it is
possible to emulate SNRs from roughly -180..+120dB.

4.12 RX- AWGN

4.12.1 Functional description

White gaussian noise (WGN) of fixed complex RMS ¢, = 796 is added to the signal. Thermal noise at the
receiver input is modeled this way. Details of the distribution can be found in figure 20 and figure 21.

© Ingenieurbliro BAY9, Dresden, Germany 35

Version 10.04.01

Gaussian PDF, histogram vs. ideal distribution

50000 T T T
?-E--EH
40000 - !‘ ‘55 E
4 -
F I
30000 F f "h 1
Fi \
20000 - 1
10000 - 1
D n 1 1
-4 .z 0 2 4
Sigma
Fig. 20: AWGN histogram using 10% samples
Naoise power density
' L L | L] L 4

[dE]

Fig. 21: AWGN power spectrum density using 10® samples

4.12.2 HW operation

The module consists of several linear feedback shift registers of different length and feedback polynomials com-
bined in a way that WGN like signal results. Real + imaginary part are created using the same basic circuitry but
with different state initialization values.

4.12.3 FW control message

There is no FW message controlling this module. WGN is added as soon as the RF model is switched on.

4.12.4 Host control message handler

There is no message control (see also FW message).

36 © Ingenieurblro BAY9, Dresden, Germany

Version 10.04.01

4,13 RX - Gain control

4.13.1 Functional description

| gainSel = 0..127

v
LUT
lgf,fxp’
Je
Delay
.............. B
128..255 g = -32..+18 :
o & o S9N Ly s | sat F t H—>
32bit | i 40bit | Ext |50 bit S 50 bit sa i 32 bit sa 16 bit
gain :
RX Gain Control

Fig. 22: Gain control

Gain control emulates the gain setting of the RF-RX path. The control input signal gainSel has 7 parallel lines that
select one of 128 arbitrary gain steps from a LUT. Signal gainSel is controlled by the users RX signal processing
core.

This LUT is freely configurable and of course it is also possible to use only a subset of the 128 gain steps
provided at maximum. The user will typically define gains similar to the ones of the real RF hardware which he
plans to use later, like 40 gain setting in steps of 2dB.

4.13.2 HW operation

Figure 22 depicts the gain control operation. Similar to the description in the channel gain section (see section
4.11), RX gain control contains the gain submodule that provides almost arbitrary gains (range [-180..+100]dB).

The 7 parallel input lines gainSel are controlled by the users RX baseband core and serve as index of the LUT.
The LUT outputs are gain factor g rx, and gain shift g;. The LUT can be set arbitrarily via message control to
emulate the behaviour of any real RF settings. In addition, a gain delay gp = 1..1023 (baseband samples) can
be defined. Setting gp = 0 is valid but may also cause a delay of 1 in case a sample is transferred in the same
cycles as the new gain value is applied. The data is eventually saturated to 16 bit for further processing in the
RF-RX emulation.

4.13.3 FW control message

Message CfgRxGainTblReq uses values [gp, g5(0),87.xp(0),85(1),...,&7.fxp(127)] to set the gain delay HW
register and the LUT, where g, = [—32..4- 18] are 6 bit, and g x, = [128..255] are 8 bit. The message combines
pairs into 14-bit values before writing to the LUT. See also section 6.3.12 for details on message CfgRxGainT-
blIReq.

© Ingenieurbliro BAY9, Dresden, Germany 37

Version 10.04.01

gainSel[5:0] Gain
LNA VGA [dB]

— = R = e = R e e = = e
[e Tl e I S e S s T S G Gy) S s S SO Y
-0 = O = O = O = O = O =

1

(o8}

(@)

1
1
1
1
1
1
1
1
1
1
1
1
0

O OO OO == = s = =
OO OO0 OO OO O = m = =

0]0j]O|O]O|0O] -8

Tbl. 2: Example RX gain table

4.13.4 Host control message handler

Function msgVrfCfgRxGainTblReq.m uses the scalar variable gp = gainDelay, and vectors gainDb(0..n, — 1),
and gainSel(0..n, — 1) as inputs, where n, is the number of gain steps emulated (maximum 128). While gp is
transferred using the FW message as is, values gs and g, 7y, are derived from gainDb for each of the n, values.

By definition gainDb = O is the gain that is needed to yield a noise level of 6, spc = 211 at the 12-bit ADC output
of the VRF IP core. In other words, if the WGN at the input of the RX gain control is amplified such that it fully
drives the ADC, we define this gain as 0dB.

The noise input has RMS 6,, = 796, cf. section 4.12, and the 16 bit output of module gainCtrl is shifted >> 4
later, so a gain offset in dB can be calculated as

gainOf fsetDb = —201log,(796,/2* /2'1) (28)

Consequently, the necessary (float) factor corresponding to gainSel (k) is given by

f(k) =10 (gainDb(k)+gainOf fsetDb) /20 (29)
(30)

Finally gain shift and fixed point gain factor are calculated as in section 4.11.4. Target index [= gainSel(k) is
used to make sure the LUT is addressed the right way

8s(l) = [logy(f(k))] 3D
gf,fXP (l) — round(256 . 210g2(f(k))_g5(1)) (32)

Corner cases (g7 fxp,8s] = [256,n] — [128,n+ 1] are corrected as before in section 4.11.4. All unused LUT
entries are set to 0 by default.

38 © Ingenieurblro BAY9, Dresden, Germany

Version 10.04.01

4.13.5 Example setup function

Function setupRxGain.m defines an example LUT for an RF with an LNA that has a gain steps of 0, 10, 20 dB
controlled by bits [5:4], and a subsequent VGA with 16 steps of 3dB controlled by bits [3:0] of gainSel. Further-
more, assume to have a HW setup such that the baseband noise level (no RX input signal from the channel) for
the highest RF gain would be -20dB full scale at the ADC. Your gain setup could then be represented by table 2.

In order to apply table 2, the control message handler msgVrfCfgRxGainTblReq.m must be called with parame-
ters gainDb = [—20,—23,—-26,—29,—30,—33..., —85], gainSel = [63,62,61,60,48,47,...,0]. This is included
in function setupRxGain.m.

4.14 RX-DC offset
RX DC offset is implemented the same way as TX DC offset, see section 4.5 for details. However, it must
be considered that the signal level at RX is not the default RMS = 3276.8 like at TX, but depends on RX

and channel gain settings. The corresponding FW message is CfgRxDcOffReq, and the corresponding control
message handler is msgVrfRxDcOffReq.m.

4.15 RX-1Q imbalance

RX IQ imbalance is implemented the same way as TX IQ imbalance, see section 4.6 for details. The correspond-
ing FW message is CfgRxlgimbReq, and the corresponding control message handler is msgVrfRxlqgimbReq.m.

4,16 RX - Saturation

Internal 16 bit RX data is eventually shifted right by 4 (>> 4) and saturated to 12 bit before being passed to the
ADC output of the VRF core.

© Ingenieurbliro BAY9, Dresden, Germany 39

Version 10.04.01

5 Physical layer control

5.1 Overview

The TX physical layer IP core (PHYO0), and the RX physical layer IP core (PHY1) must be connected to the dac
inputs (PHYO-TX), and to the adc outputs / gainSel inputs (PHY1-RX) of the VRF, respectively. See also the
example in figure 2.

If only the RF and channel emulation capabilities of the VRF IP core are needed, then these connections are
sufficient. However, the VRF IP core offers additional capabilities to control the PHY IP cores as follows:

e Forward control messages to / from PHY IP cores.
e Send data to / read data from PHY TX/RX data buffers.
e Fill the TX data buffer via an internal data generator, read the RX data buffer via an internal data sink.

e |nitiate transfer from the TX data buffer to the PHYO-TX IP core, and from the PHY1-RX IP core to the RX
data buffer.

e Compare TX and RX data to detect frame errors.
e Use GPO/GPI pins to control the PHY IP cores, e.g. reset.

An overview is given in the upper part of figure 1. These features may or may not be used by the customer. If
not required, the user should set the memory sizes of PHYO0/1 buffers to small values in order to save FPGA
resources, see also section 5.3.1.

5.2 Message forwarding

Message forwarding can be used to control the PHY IP cores via the same interface (ctr/ or UART) that also
controls the VRF. Data is sent / received via VRF control messages Cirl(Wr/[Rd)Req and the corresponding
Ctrl(Wr/Rd)Cfm. See section 6.3.4, section 6.3.5, section 6.3.31, and section 6.3.32 for details on messages.
The forwarding mechanism is described in detail section 6.2.

5.3 Data transmission + reception
5.3.1 Overview

The PHY control part contains TX + RX data buffers that can be be connected to the PHY IP cores if needed.
By default, these buffers are 8 bit wide, i.e., they transfer data byte wise, and hold up to 4096 bytes.

Buffer size and width can be changed by adapting the parameters in file ./src/common/includes/def Const vrf.v

parameter VrfDataWidth_C = 8;
parameter VrfRxTxBufNum_C = 4096;
parameter VrfRxTxBufAdrWidth_C = 12;

where, parameter VrfDataWidth C is the data bit width, VifRxTxBufNum_C is the number of words, VrfRxTxB-
ufAdrWidth_C must be set to [log,(VrfRxTxBufNum_C)|. The maximum data bit width is 16 bit, and the

maximum number of words is 2'© = 65536. If the PHY control features are not needed, set

parameter VrfDataWidth_C 1;
parameter VrfRxTxBufNum_C = 2;
parameter VrfRxTxBufAdrWidth_C = 1;

in order to minimize the allocation of unused FPGA resources.

40 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

5.3.2 TX buffer filling via control interface

Message DatBufTxWriteReq allows to fill the TX data buffer via the control interface. If the buffer data bit width
is less than 16 bit (default is 8 bit, cf. section 5.3.1), then only the lower bits are transferred to the buffer. See
section 6.3.10 for details on the message.

5.3.3 TX buffer filling via data generator

The TX data buffer can also be filled via the internal data generator. Message DatBufTxFillReq is used to initiate
the process. Data filling is possible by either simply counting up from a start value, or pseudo-random data
generation with a linear feedback shift register. Additionally, the last 4 words of the generated data can be set to
0 independent of the type of data generation. See section 6.3.9 for details on the message.

5.3.4 Starting transmission of TX data

Data transfer from the TX buffer to the TX PHY does not start automatically with message DatBufTxWriteReq or
DatBufTxFillReq. Instead, it must be initiated by message DatBufTxStartReq after filling the buffer. The buffered
data can be used multiple times without refilling. After message DatBufTxStartReq has been confirmed, the data
is available at output datlfPhyOOut and transferred whenever the TX PHY core indicates datl/fPhy0Qut ir = 1.
See also section 6.3.11 for details on the message.

5.3.5 Starting reception of RX data

RX data reception is started by message DatBufRxStartReq. If issued, the RX data buffer resets its internal
counter to zero, is ready to receive new data, and overwrites previously received data when data is transferred
from the RX PHY. The number of data words should normally be set in the message, but can also be set to max-
imum if unclear in advance. After DatBufRxStartReq has been confirmed, data is received at input dat/fPhy1in
whenever the RX PHY core indicates dat/fPhy1in_or=1. See section 6.3.7 for details on the message.

5.3.6 RX buffer read/check via data sink

If data has been created using DatBufTxFillReq, then the integrity of the data in the RX buffer can be checked
via message DatBufRxCheckReq. Parameters must be selected the same way as in message DatBufTxFillReq
on the TX side. The corresponding confirm in DatBufRxCheckCfm returns the status of the data. See section
6.3.8 and section 6.3.35 for details on the messages.

5.3.7 RX buffer read via control interface
Data can be read from the RX buffer via message DatBufRxReadReq. Only the lower bits of the corresponding

confirm message DatBufRxReadCfm are valid if the bit width is less then 16 bit (default 8 bit, cf. section 5.3.1).
See section 6.3.6 and section 6.3.33 for details on the messages.

5.4 General purpose IO pins

There are 16 general purpose input / output pins each. They can be read / written via messages GetGpiReq /
CfgGpoReq, see section 6.3.26 and section 6.3.25.

© Ingenieurbliro BAY9, Dresden, Germany 41

Version 10.04.01

6 Messages

6.1 Overview

The IP core is controlled via the message interface. All messages can be used with the UART or the ctrl lines
equivalently, the only exception being WLAN messages TxImm(A/B)Req.

The first word of a message is always the message ID. After the message ID, an arbitrary number of parameters
can follow, see section 6.3 below. Message |IDs are autogenerated and subject to change with a new release
without special notice. In order to avoid problems when switching to an updated version of the IP core, one of
the files def_Msgld.h/m should be used.

Matlab/Octave example implementations of message handlers can be found in the ./msg directory. In some
cases, these handlers transfer parameters directly to the IP core, in other cases, they perform intermediate
calculation from more abstract parameters. The handlers make use of function sendMsg.m using the generic
format

cfm = sendMsg(id, req,nC fm)

where req is the request message, nC fm is the length of the expected confirm message, and c fm is the confirm
message itself. All values are 16 bit, req and cfm are row vectors. Variable id is a struct selecting a specific
target IP core to deliver the message. It is explained in more detail in section 6.2.

6.2 Targets and forwarding

PC

Octave/Matlab

Y

msg(Vrf/Wlan)XyzReq.m

Embed into
msgVrfCtrl(Rd/Wr)Req.m

sendMsg.m

Y

fpgaSendMsg.m
(msg transfer backend, e.g.
UART ctrl, to be adapted depending
on physical FPGA access)

extIflUART

FPGA

Fig. 23: Message handling and forwarding

Each control message handler passes variable id to function sendMsg.m. Variable id is a struct with arbitrary
fields used by sendMsg.m to identify the target of the message. Function sendMsg.m is typically depending on
the target the message is sent to (wlanX / vrfX). It might use the following struct fields:

42 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01 -

core: Type of IP core to be addressed, e.g. 'vrf’ to configure the VRF, or 'wlan’ to configure WLAN PHY cores.

inst. Instance number, e.g., 0, 1, ..., referring the to a specific instance of a certain type of IP core if there is
more than one. E.g., in figure 2 there are 2 WLAN IP cores with instance numbers 0 for TX and 1 for
RX, respectively.

The vrfX example in figure 2 has 3 different targets, core = 'vrf’ / inst= 0, core = 'wlan’ / inst = 0, and core = 'wlan’
/ inst = 1. Figure 23 shows how messages are sent to different targets via a single control interface. Variable id
may contain additional fields that are used with other (testing) versions of sendMsg.m. If id.core =’wlan’, function
sendMsg.m calls msgVrfCtrl(Rd/Wr)Req.m with the WLAN message as payload, thereby redirecting the WLAN
control message to the ctrllfPhy(0/1)(In/Out) interface in figure 2.

If only a simple Verilog module like wianX with a single WLAN core is used, then function sendMsg.m can access
the UART (or whatever) interface directly, ignoring all settings of variable id.

6.3 Definitions

6.3.1 Message ID numbering

Message IDs might seem weird as they start at an arbitrary position with some "holes" in between. This is due
to test/debug messages that are not distributed with the commercial version of the IP core. All message IDs
are autogenerated and may change with a new version of the core. Please use the files def Msgld vrf.h/m in
directory ./msg or converted versions thereof.

6.3.2 Msgld 24 — ResetReq
Purpose
System reset request

Parameters
None

Description

ResetReq initiates a SW reset of the system. The SW reset might not work in case the system has crashed
completely, e.g., due to misconfiguration. In this case, a HW reset via signal resetin is necessary. Different from
other messages, ResetReq does not have a corresponding confirm.

6.3.3 Msgld 25 — OnOffReq

Purpose
VRF on/off request

Parameters

1. 0=off, 1=0n

Description
OnOffReq switches on/off all virtual RF modules. When modules are switched off, their internal state is reset,
e.g- WGN generator, frequency shift phase, etc... . Configuration settings are not affected.

© Ingenieurbliro BAY9, Dresden, Germany 43

Version 10.04.01

6.3.4 Msgld 26 — CtrIWrReq

Purpose
Write to physical layer control interface

Parameters

1. Ctrlif number M (0 or 1)
2. Number of data to follow N
3. Data 0, Data 1, ..., Data N-1

Description
CtriWrReq writes N words of 16 bit data to interface ctrllfPhy[0/1]Out. The data typically contains a request
message sent to a connected PHY IP core.

6.3.5 Msgld 27 — CtrIRdReq
Purpose
Read from physical layer control interface

Parameters

1. Ctrllif number M
2. Number of data to read N

Description
CtrlRdReq reads N words of 16 bit data from the interface ctrllfPhy[0/1]In. The data in CtrIRdCfm typically
contains a confirm message read from a connected PHY IP core.

6.3.6 Msgld 28 — DatBufRxReadReq

Purpose
Read from RX data buffer
Parameters

1. Number of data words to read
Description

DatBufRxReadReq reads from the RX data buffer starting at buffer address 0. Data is returned in the corre-
sponding DatBufRxReadCfm.

6.3.7 Msgld 29 — DatBufRxStartReq

Purpose
Start RX data buffer
Parameters

1. Number of data words to receive
Description

DatBufRxStartReq prepares writing of data from PHY1-RX to the RX data buffer. Data can be received at input
datlfPhy1In and stored in the buffer after the corresponding DatBufRxStartCfm.

44 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

6.3.8 Msgld 30 — DatBufRxCheckReq

Purpose
Check RX data buffer

Parameters
1. Number of data
2. First data word
3. Select 0 = count up, 1 = random data
4. Select 0 = normal data, 1 = last 4 words are 0

Description
DatBufRxCheckReq checks if the contents of the RX data buffer is consistent with the data generated by mes-
sage DatBufTxFillReq for transmission.

6.3.9 Msgld 31 — DatBufTxFillReq

Purpose
Fill TX data buffer using the internal generator

Parameters
1. Number of data to write
2. First data word
3. Select 0 = count up, 1 = random data
4. Select 0 = normal data, 1 = last 4 words are 0

Description

DatBufTxFillReq fills the TX data buffer using the internal data generator. Starting with the first data word,
the generated data is either simply counted up, or a linear feedback shift register is used for pseudo random
generation of the remaining data words.

6.3.10 Msgld 32 — DatBufTxWriteReq

Purpose
Write to TX data buffer

Parameters
1. Number of data to write
2. Data 1st word
3. Data 2nd word
4. Etc...

Description
DatBufTxWriteReq writes arbitrary values to the TX data buffer.

6.3.11 Msgld 33 — DatBufTxStartReq

Purpose
Start TX data buffer

Parameters
1. Number of data

Description
DatBufTxStartReq initiates writing of data from TX data buffer to a connected PHY0-TX core. Data is ready be
read from the buffer and passed to output dat/fPhy0Out after the corresponding DatBufTxStartCfm.

© Ingenieurbliro BAY9, Dresden, Germany 45

Version 10.04.01

6.3.12 Msgld 34 — CfgRxGainTblReq

Purpose
RX gain delay and gain table configuration request

Parameters

1. Gain delay in samples

2. Gain shift (g;) index 0

3. Gain factor (g, rxp) index 0
4. Indices 1..127 to follow ...

Description
CfgRxGainTblReq configures the AGC table of the virtual RF. 128 different gain configurations are set. The
actual gain used during reception is selected by the 7 gainSel input lines.

The input data x of module rxGain is multiplied as

Y=X-8f frap << (85 —8)

The output is saturated to 32 bit. For practical purposes, only gain factors between 128..255 are useful in order to
achieve maximum resolution. The output y is shifted right >> 4 and saturated to 12 bit during further processing
before finally being passed to the ADC output of the VRF core.

The gain delay defines how many samples must pass after a change of the gainSel lines, before the new gain is
applied.

Note that the control message handler msgVrfCfgRxGainTblReq.m uses parameters gainDb and gainSel as
inputs and calculates the LUT containing gy, 7,xp and g5 from these values. See section 4.13.4 for details.

6.3.13 Msgld 35 — CfgRxlqimbReq

Purpose
RX'1Q imbalance configuration request

Parameters

1. RX'1Q imbalance factor ay,,
2. RX 1Q imbalance factor by,
3. RX 1Q imbalance factor ¢y,

Description
See MsgCfgTxlgimbReq in section 6.3.21.

6.3.14 Msgld 36 — CfgRxDcOffReq

Purpose
RX DC offset configuration request

Parameters

1. RX DC offset real part
2. RX DC offset imag part

Description
See MsgCfgTxDcOffReq in section 6.3.20. However, different from TX, the signal level at RX depends on the
current gain settings. RX DC offset must therefore be seen relative to this signal level.

46 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

6.3.15 Msgld 37 — CfgDacRateReq

Purpose
DAC sample rate configuration request

Parameters

DAC sample rate (p), lo 16 bit
DAC sample rate (p), hi 16 bit
System clock (q), lo 16 bit
System clock (q), hi 16 bit

Hwp

Description

CfgDacRateReq sets the rate at which the VRF DAC input requests a sample from the TX baseband. The VRF
sets the input ready signal (dac _ir) each p out of g cycles. Signal dac _ir is set as regular as possible, e.g.
for p =2 g =5, the sequence would be "010010100101001..." . Parameters p and g can assume any value
1..2% — 1, but p < ¢ must hold. The defaultis p = 1,g = 1, requesting TX data in every clock cycle.

6.3.16 Msgld 38 — CfgMultiPathReq

Purpose
Multipath configuration request

Parameters

Number of coefficients (n, = 1..10)
Coefficient 0 real part

Coefficient 0 imag part

Coefficient 0 delay

Coefficient 1 real part

2 o

Description

CfgMultiPathReq sets the coefficients for the FIR filter that models the multipath fading. Coefficients are Q13,
i.e. 213 = 1, and must not exceed a complex magnitude of 2. The coefficient delay can be between 0..29. The
order of configuration parameters is (1, o re,fxp» €0.im, fxp> 40, Cl.Re,fxps -+ dno—1)-

Note that this message has a variable number of parameters depending on the number of coefficients used.
Independent of n. all previous settings are automatically deleted if the message is used.

6.3.17 Msgld 39 — CfgFreqOffReq
Purpose
Frequency offset configuration request
Parameters

1. Frequency offset lower 16 bit (1 rxp.20)

2. Frequency offset middle 16 bit (. rxp m1)
3. Frequency offset upper 16 bit (f;. rxp,H1)

© Ingenieurbliro BAY9, Dresden, Germany 47

Version 10.04.01

Description
CfgFreqOffReq sets the simulated frequency offset relative to the sample frequency such that

freqOffHz = fr.pp/2% - fs
where fs is the sampling frequency, and f; s, = [-2*7 .. +2%7 — 1]. Values f, s, > 0 correspond to a higher
carrier frequency at the RX.

In order to provide consistent settings between frequency offset and clock offset for a certain crystal deviation at
the receiver with carrier frequency and baseband clock derived from the same source, control message handler
msgVrfCfgFreqOffReq.m calculates f, ., from the given offset in ppm, the carrier frequency and the sampling
frequency. See section 4.9.4 for details.

6.3.18 Msgld 40 — CfgCIkOffReq
Purpose
Clock offset configuration request

Parameters

1. Clock offset lower 16 bit, (co32, fxp.L0)
2. Clock offset middle 16 bit, (c,32, fxp.mr1)
3. Clock offset upper 16 bit, (c32, fxp,H1)

Description

CfgClkOffReq sets the simulated clock offset. Parameter ¢ 32 = 32, 1xp / 248 defines the fraction of a sample by
which the sampling time is shifted each 32 samples. Values c¢,3; < 0 correspond to a higher clock frequency at
the RX, i.e. the sampling time shifts into the negative direction.

In order to provide consistent settings between frequency offset and clock offset for a certain crystal deviation at
the receiver with carrier frequency and baseband clock derived from the same source, control message handler
msgVirfCfgClkOffReq.m calculates c,32,7xp from the given offset in ppm. See section 4.10.4 for details.

6.3.19 Msgld 41 — CfgTxInpScReq

Purpose
TX input scaling configuration request

Parameters

1. TX scaling factor, tx; = 0..32767

Description
CfgTxInpScReq is used to multiply the 12 bit input data x of module txScale as

y=x-txy >> 8

TX factor must be set such that output y has exactly 20 dB backoff with respect to the complex valued full scaled
data. In other words, given the DAC input data (= TX signal) backoff /BO, txy is calculated as

tx; = 4096 - 10(1BO~20)/20

See also section 4.4 for details.

48 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

6.3.20 Msgld 42 — CfgTxDcOffReq

Purpose
TX DC offset configuration request

Parameters

1. TX DC offset real part
2. TX DC offset imag part

Description
CfgTxDcOffReq configures module dcOffto add values dcOff(Re/lm) to the 1/Q path. As the signal level (RMS)
is 3276.8, the DC offset must be seen relative to this. See also section 4.5 for details.

6.3.21 Msgld 43 — CfgTxilqimbReq
Purpose

TX 1Q imbalance configuration request
Parameters

1. TX imbalance factor ayy,
2. TXimbalance factor by,
3. TXimbalance factor ¢y,

Description
CfgTxIlgimbReq configures TX 1Q imbalance to apply a matrix multiplication to the input signal x as follows

)= (ao) ()

where a = apy, /2", b= bpy, /2", and ¢ = ¢y, /2'4. Parameters a, b, and ¢ are calculated in control message
handler msgVrfCfgTxlqgimbReqg.m, see section 4.6 for details.

6.3.22 Msgld 44 — CfgTxPaReq
Purpose

TX PA configuration request
Parameters

1. Bypass mode 0/1 = off/on

Description
CfgTxPaReq configures power amplifier modeling to be bypassed or not.

6.3.23 Msgld 45 — CfgTxPaLutReq

Purpose
TX PA LUT configuration request

Parameters

1. Amplitude factor ag f)
2. Phase shift @g 7y

© Ingenieurbliro BAY9, Dresden, Germany 49

Version 10.04.01

3. Amplitude factor ay zyp
4. Phase shift @y 7,
5. Continue until entry 512 ...

Description

CfgTxPaLutReq configures the LUTs for power amplifier modeling. 513 values for amplitude factor ay ., =
0..32767 and phase shift @ s, = —32768..+ 32767, are transferred to the VRF core. Fixed point values corre-
spond to real factors ax = ay s, /2"°, and real phase shifts Qx = @k rxp/2"° - 180°. Index k = 0..512 is selected
by the amplitude of the complex valued input signal such that if |x| = k - 64 the corresponding LUT values are
chosen. For input amplitudes other than k- 64, the LUT outputs are interpolated linearly. See also section 4.7 for
details.

6.3.24 Msgld 46 — CfgChGainReq

Purpose
Channel gain configuration request

Parameters
1. Channel gain factor g ¢y, = 0..255
2. Channel gain shift, gg = —32.. 4+ 18

Description
CfgChGainReq is used to multiply the 16 bit input data x as

y=X-gfpep- 287

The output is saturated to 32 bit. For practical purposes, only gain factors between 128..255 are useful in order
to achieve maximum resolution. The complex 16 bit input is assumed to have a full scale backoff of 20 dB,
corresponding to an RMS of 3276. The following WGN generator produces noise with complex RMS = 796,
hence the SNR for zero gain (g; = 128, g, = 1) is about 12.3dB. Message handler msgVrfCfgChGainReq.m
uses the target SNR as input parameter and sets g ., & accordingly. See section 4.11 for details.

6.3.25 Msgld 47 — CfgGpoReq

Purpose
General purpose output configuration request

Parameters
1. Dat
2. Mask

Description
CfgGpoReq writes the bits in Dat to the gpo output lines. Only bits where the corresponding Mask bit is set are
written, all others keep their original values.

6.3.26 Msgld 48 — GetGpiReq

Purpose
General purpose input read request

Parameters
1. Mask

Description
GetGpiReq reads the bits of the gpi input lines. Only bits where the corresponding Mask bit is set are read, all
others return 0.

50 © Ingenieurblro BAY9, Dresden, Germany

Version 10.04.01

6.3.27 Msgld 49 — VersionReq

Purpose
Version number read request

Parameters
None

Description
VersionReq reads the version number and evaluation flag, which are returned in VersionCfm.

6.3.28 Msgld 50 — LedBlinkReq

Purpose
Led the LEDs blink for a moment

Parameters

1. Blink period in cycles / 220

Description
LedBlinkReq lets all the LEDs blink 4 times.

6.3.29 Msgld 55 — BootCfm

Purpose
Confirm system reset/boot

Parameters
None

Description
BootCfm confirms system boot. The message is sent after the booting and must be read by the host. Other
messages must not be sent before BootCfm indicates the end of the boot process.

6.3.30 Msgld 56 — OnOffCfm

Purpose
Confirm VRF on/off request

Parameters
None

Description
OnOffCfm confirms the OnOffReq.

6.3.31 Msgld 57 — CtrIWrCfm

Purpose
Confirm ctrl write request

Parameters
None

Description
ExIfWriteCfm confirms the CtriWrReq.

© Ingenieurbliro BAY9, Dresden, Germany 51

Version 10.04.01

6.3.32 Msgld 58 — CtrIRdCfm
Purpose
Confirm ctrl read request

Parameters

1. First word read from ctrl interface
2. Second word read from ctrl interface
3. Etc...

Description
CtrIRdCfm confirms CtrIRdReq and returns the data.

6.3.33 Msgld 59 — DatBufRxReadCfm
Purpose
Confirm RX data buffer read request

Parameters

1. First word read from RX data buffer
2. Second word read from RX data buffer
3. Etc...

Description
DatBufRxReadCfm confirms DatBufRxReadReq and returns the data.

6.3.34 Msgld 60 — DatBufRxStartCfm
Purpose
Confirm RX data buffer start request

Parameters
None

Description
DatBufRxStartCfm confirms DatBufRxStartReq.

6.3.35 Msgld 61 — DatBufRxCheckCfm

Purpose
Confirm RX data buffer check request

Parameters

1. Error flag: 0=0OK, 1=error

Description
DatBufRxCheckCfm confirms DatBufRxCheckReq and returns the error flag.

52 © Ingenieurblro BAY9, Dresden, Germany

Version 10.04.01

6.3.36 Msgld 62 — DatBufTxFillCfm

Purpose
Confirm TX data buffer fill request

Parameters
None

Description
DatBufTxFillCfm confirms DatBufTxFillReq.

6.3.37 Msgld 63 — DatBufTxWriteCfm

Purpose
Confirm TX data buffer write request

Parameters
None

Description
DatBufTxWriteCfm confirms DatBufTxWriteReq.

6.3.38 Msgld 64 — DatBufTxStartCfm

Purpose
Confirm TX data buffer start request

Parameters
None

Description
DatBufTxStartCfm confirms DatBufTxStartReq.

6.3.39 Msgld 65 — CfgRxGainTbICfm

Purpose
Confirm RX gain table configuration request

Parameters
None

Description
CfgGainTblCfm confirms the RX gain table configuration.

6.3.40 Msgld 66 — CfgRxlglmbCfm

Purpose
Confirm RX 1Q imbalance configuration request

Parameters

1. Status: 0 = OK, 1 = Message not supported

Description
CfgRxIgImbCfm confirms RX 1Q imbalance configuration request.

© Ingenieurbliro BAY9, Dresden, Germany

53

Version 10.04.01

6.3.41 Msgld 67 — CfgRxDcOffCfm

Purpose
Confirm RX DC offset configuration request

Parameters
1. Status: 0 = OK, 1 = Message not supported

Description
CfgRxDcOffCfm confirms RX DC offset configuration request.

6.3.42 Msgld 68 — CfgDacRateCfm

Purpose
Confirm DAC rate configuration request

Parameters

1. Status: 0 = OK, 1 = Message not supported

Description
CfgDacRateCfm confirms DAC rate configuration.

6.3.43 Msgld 69 — CfgMultiPathCfm

Purpose
Confirm multipath configuration request

Parameters
1. Status: 0 = OK, 1 = Message not supported

Description
CfgMultiPathCfm confirms frequency offset configuration.

6.3.44 Msgld 70 — CfgFreqOffCfm

Purpose
Confirm frequency offset configuration request

Parameters
1. Status: 0 = OK, 1 = Message not supported

Description
CfgFreqOffCfm confirms frequency offset configuration.

6.3.45 Msgld 71 — CfgCIkOffCfm

Purpose
Confirm time offset configuration request

Parameters

1. Status: 0 = OK, 1 = Message not supported

Description
CfgCIkOffCfm confirms time/clock offset configuration.

54 © Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

6.3.46 Msgld 72 — CfgTxInpScCfm

Purpose
Confirm TX input scale configuration request

Parameters
None

Description
CfgTxInpScCfm confirms TX input scaling configuration request.

6.3.47 Msgld 73 — CfgTxDcOffCfm

Purpose
Confirm TX DC offset configuration request

Parameters

1. Status: 0 = OK, 1 = Message not supported

Description
CfgTxDcOffCfm confirms TX DC offset configuration request.

6.3.48 Msgld 74 — CfgTxigimbCfm

Purpose
Confirm TX 1Q imbalance configuration request

Parameters

1. Status: 0 = OK, 1 = Message not supported

Description
CfgTxlqgImbCfm confirms TX 1Q imbalance configuration request.

6.3.49 Msgld 75 — CfgTxPaCfm

Purpose
Confirm TX PA configuration request

Parameters

1. Status: 0 = OK, 1 = Message not supported

Description
CfgTxPaCfm confirms PA configuration request.

6.3.50 Msgld 76 — CfgTxPaLutCfm

Purpose
Confirm TX PA LUT configuration request

Parameters

1. Status: 0 = OK, 1 = Message not supported

Description
CfgTxPaLutCfm confirms PA LUT configuration request.

© Ingenieurbliro BAY9, Dresden, Germany

Version 10.04.01

6.3.51 Msgld 77 — CfgChGainCfm

Purpose
Confirm channel gain request

Parameters
None

Description
CfgChGainCfm confirms channel gain setting configuration request.

6.3.52 Msgld 78 — CfgGpoCfm

Purpose
General purpose output configuration confirm
Parameters

1. Updated GPO value

Description
CfgGpoCfm confirms execution of CfgGpoReq and returns the updated GPO value.

6.3.53 Msgld 79 — GetGpiCfm

Purpose
General purpose input read confirm
Parameters

1. GPlinput data (masked)

Description
GetGpiCfm confirms execution of GetGpiReq and returns the masked input value.

6.3.54 Msgld 80 — VersionCfm

Purpose
Confirm version request and send version number
Parameters

1. Major version

2. Branch version

3. Tag version

4. Evaluation flag: 0 = full version, 1 = eval version

Description
VersionCfm returns the 3 digit version number and the evaluation flag in response to a VersionReq.

6.3.55 Msgld 81 — LedBlinkCfm

Purpose
Confirm LED blink request

Parameters
None

Description
LedBlinkCfm confirms execution of LedBlinkReq.

56 © Ingenieurblro BAY9, Dresden, Germany

Version 10.04.01

7 License

7.1 General

The Verilog sources, data files, message example applications — also referred to as the "code" — and the docu-
mentation distributed in this package are under copyright.

By downloading and using the code, you accept the license terms defined in this section.

7.2 Limited liability

You accept that the code comes without warranty for any particular purpose. The copyright owner will not be
liable for any damage caused by the code.

7.3 Restrictions

You are not allowed to copy or redistribute the code.

You are not allowed to change the code with exception of minor modifications that do not change the original
functionality, e.g., replacing memory models or fixing synthesis problems. You accept that these minor modifica-
tions do not lay foundation to any copyright on your side.

You are not allowed to remove the functional restrictions of the evaluation version.

7.4 Terms of use

This is an evaluation version with some functional and legal restrictions. If you consider using the VRF IP core
for commercial, non-commercial, academic, military, private or whatever purposes, you are allowed to evaluate
this version.

Evaluation allows you to

e inspect the sources

e synthesize the code for FPGA or similar

e run the vrfX example module

e embed the code into a larger system with your own physical layer IP cores

all exclusively for the purpose of testing and evaluating the IP core functionality.

Before you start using the core within your project in order to test and optimize your own physical layer IP, you
must obtain a commercial license.

© Ingenieurbliro BAY9, Dresden, Germany 57

